Commit Graph

11 Commits (89d4931324589bf75ed088e98888ff21fe7cd41e)

Author SHA1 Message Date
Yi Zhang 89d4931324 Linalg lowering for aten.conv2d and aten.AdaptiveAvgPool2d
1. Add m_TorchConstantIntList
2. Lowering for aten.conv2d
3. Lowering aten.AdaptiveAvgPool2d
2021-07-09 15:04:29 -07:00
Sean Silva d5108b9dc1 Add IREE support in TorchScript e2e tests.
- Add support for "expected failures" in test reporting. The new error
  reports look like
  [this](https://gist.github.com/silvasean/6ffd95e1d55302b699673da201da210d).
  - We will now be able to put these tests into CI, since the harness
    understand which tests are expected to pass and fail.
- Refactor RefBackendTestConfig to NpcompBackendTestConfig which
  supports both RefBackend and IREE.
- Add instructions for installing IREE dependencies (both from packages
  and for local builds of IREE)
- Add `tools/torchscript_e2e_test.sh` for invoking the e2e test
  harness (this makes invoking a bit easier, as it doesn't rely on a
  loose Python invocation).
2021-06-30 16:19:25 -07:00
Sean Silva 79928cd2dd Generalize support for elementwise ops.
We plumb through e2e a fair number of interesting cases:
- unary, binary, ternary elementwise ops
- ops like `torch.aten.add.Tensor` that also take a scalar parameter
- static size-1 broadcasting

We allow the static size-1 broadcasting case, but emit a runtime error
in the case of dynamic size-1 broadcasting. This seems like a sweet spot
subset of things that can be lowered directly to linalg, while not being
overly constraining to users. This is consistent with what IREE is doing
for CHLO->Linalg lowering as well
([code](50bf7a87e4/iree/compiler/InputConversion/MHLO/BroadcastingToLinalgPatterns.cpp (L1))).

To test the static size-1 case, we added support for the
`torch.aten.unsqueeze` op and lowering for it through
`linalg.tensor_expand_shape`. This involved a generalization of
`MaximizeValueSemantics` able to handle it (the solution there also
works for `torch.aten.flatten.using_ints` which we need for ResNet
anyway)

Also, a few minor additional changes:
- Add `VerifyInvariantsBeforeBackendLowering` pass, which catches a
  large class of errors before we get to backend lowering (now that we
  are doing dialect conversion, the errors are way nicer if we just emit
  them up front rather than in the guts of a random pattern).
- Minor change to RefBackend to allow `linalg.tensor_expand_shape`.

Recommended review order:
- e2e tests in elementwise.py
- `ConvertElementwiseOp` in TorchToLinalg.cpp + elementwise.mlir test
- `ConvertAtenUnsqueezeOp` in TorchToLinalg.cpp + unsqueeze.mlir test
- RefineTypes.cpp + tests
- MaximizeValueSemantics changes + test
- VerifyInvariantsBeforeBackendLowering pass + test
2021-06-28 13:28:38 -07:00
Yi Zhang 6dddb4d4fe Add torch.aten.batch_norm Linalg lowering support
1. Added a simplified version of torch.aten.batch_norm which only handles
inference and assumes the weight, bias, running_mean, running_var are not
None.

2. Removed the primitive types check in verifyLinalgCompatibleTypes check
since now we have proper type converter to handle torch types conversion.
The checks for RankedTensorType is kept because the type converter
doesn't guarantee the converted builtin tensor type is ranked. A
separate verification pass to verify the invariant expected by later
passes will need to be added before those can be removed as well.
2021-06-22 16:45:21 -07:00
Sean Silva b7b7fd4959 Rewrite error reporting of e2e tests.
This now gives [much nicer output](https://gist.github.com/silvasean/f048e0f37b04542dae6469b86802bb3e).
Embarrassingly, we previously couldn't even report failures for two
different tests, and weren't able to report on compilation failures
(besides just crashing).
2021-05-20 11:28:20 -07:00
Sean Silva d66e8fe1f8 Get simple quantized model importing.
This is enough to import the program and get it through the compilation
pipeline. It of course fails at the VerifyBackendContract pass since
there is a lot missing, but the final IR for a simple quantized MLP is
looking pretty decent already:
[IR](https://gist.github.com/silvasean/f76bccd76e9b193d396cfb2f9a11f54d)

Main changes:
- Add support for importing torch quantized tensors, including
  `torch.per_tensor_affine.create` op and `!torch.qint8` element type.
- Add support for importing `LinearPackedParamsBase` (basically a weight
  + optional bias, but requires `torch.linear_params.create` op +
  `!torch.LinearParams` type to model it). This was less painful than I
  expected, as it has the necessary methods to opaquely unpack itself. I
  factored things so it should be easy to extend to other custom classes
  like `ConvPackedParamsBase`.
- Add minimal boilerplate for importing `quantized::*` ops, with
  `quantized::linear` being a motivating example.
- Add e2e test with simple quantized MLP (courtesy of @phoenix-meadowlark).

This is somewhat of an abuse of `!numpy.ndarray` / `tensor`, as
really the proper semantics of `!torch.qint8` dtype on a Torch tensor is
"check the quantizer object of the tensor for side data (scale/offset,
possibly per-channel) that defines the full semantics of the tensor". We
don't have any such notion of "side data" for `!numpy.ndarray` /
`tensor`, let alone anything that would have the associated behavior of
keying off the dtype to determine if the side data is present.
This will be fixed by a proper `!torch.tensor` type.
2021-05-20 11:28:20 -07:00
Sean Silva 179105ca3e Add basic MLP's to the e2e curriculum.
These tests pass on the reference backend.

- Add aten.linear op + shape xfer function + ATen->Linalg lowering.
 - Note: this needs to be more automated, and needs to cover more cases.
 - Current not implemented caveats:
  - size-1 broadcasting for bias vector (either static-size-1 or ? case)
  - higher-rank aten.linear ops (not produced by torch.nn.Linear though)
  - type promotion (still don't even know the exact rules here)
- Add folder for torch.derefine op. Now the inliner can clean it up as
  it inlines. (call boundaries are a main place we need to insert
  torch.derefine) This is brittle -- the other important case is control
  flow which will need to be handled via an extension to
  RefineTypes.cpp (as will more robust call handling). River has an
  in-flight patch to update it to the new dataflow framework so I didn't
  want to do anything intrusive here.
    - Also adjust torch.derefine syntax to use the keyword `to` instead of
      `->`, as most type-only, cast-like ops do.
2021-04-27 12:18:54 -07:00
Sean Silva 3a890aa26c Miscellaneous changes while trying to work on ResNet18
- Move frontend lowering pipelines to c++ (this helps with reproducing
  failures in npcomp-opt)
- Add debugging printouts when compilation fails on RefBackendTestConfig

The experience now when a test fails during MLIR lowering is now like this:
```
NPCOMP TorchScript Object Graph IR -> NPCOMP Backend IR lowering failed with the following diagnostics:
failed to legalize operation 'torch.global_slot'
Module does not conform to npcomp's backend contract. See dialect conversion legality information above.

Error can be reproduced with:
$ npcomp-opt -torchscript-to-npcomp-backend-pipeline /tmp/ResNet18Module.mlir
```

And when TorchScript->MLIR import fails it looks like this:
```
PyTorch TorchScript module -> NPCOMP Object Graph IR import failed with the following diagnostics:
unhandled prim operation: %18 : int = prim::min(%17) # /usr/local/google/home/silvasean/.local/lib/python3.9/site-packages/torch/nn/functional.py:4532:4
```

Also,
- Add `--filter=<regex>` to e2e test harness to filter tests.
- Add a few prim ops that were needed to import ResNet18
- Fix torch.prim.Loop.condition assemblyFormat (it previously would not
  round-trip in the case of no loop-carried variables)
2021-04-27 11:51:11 -07:00
Sean Silva 8f96901943 Add vision models (resnet18 to start).
Also,
- improve error reporting of e2e framework.
2021-04-27 11:51:11 -07:00
Sean Silva b8ad0189ac Add comment about relative import.
This file needs to adopt best practices for how to structure python
"main"'s, but I don't know how to do that yet.
2021-04-20 12:02:34 -07:00
Sean Silva 39d50ccf0d Add end-to-end testing framework for TorchScript.
The E2E tests can be run with
```
npcpy frontends/pytorch/e2e_testing/torchscript/main.py
```

This commit adds a couple items supporting that end, including new sugar
for annotations (no more raw use of ClassAnnotator!).

Recommended review order:

1. `frontends/pytorch/e2e_testing/torchscript/main.py` for
   the harness + `basic.py` in that directory for examples of tests.
2. Annotation sugar in `frontends/pytorch/python/torch_mlir/torchscript/annotations.py`
   and unittest in `frontends/pytorch/test/ivalue_import/annotations/sugar.py`
3. Global test registry / sugar in
   `frontends/pytorch/python/torch_mlir/torchscript/e2e_test/registry.py`
4. `frontends/pytorch/python/torch_mlir/torchscript/e2e_test/framework.py`
   for the meat of the testing framework (start at `run_tests`), and
   looking at the backend configs in
   `frontends/pytorch/python/torch_mlir/torchscript/e2e_test/configs`
   for examples of backends. This is likely the bulk of review time.
5. Unit tests of the framework logic in `frontends/pytorch/test/torchscript_e2e_test`

There's TODO's scattered throughout, but this seems functional enough to
start pulling stuff into and kicking the tires. A few missing pieces:

1. Marking test expected pass/fail per backend.
2. Figuring out how best to fit this into dev workflows.
3. IREE TestConfig.

Also, forgive this Python newbie... Any advice on Python code structure
/ library design would be much appreciated.
2021-04-20 12:00:35 -07:00