Used by resnet18.
It seems to originate from a helper `_verify_batch_size`:
[code link](b3bf08e67f/torch/nn/functional.py (L2099)).
I couldn't find a way to test `prim::RaiseException` without also having
`prim::Uninitialized`.
This primarily unlocks proper handling of free functions (that is,
functions that are not methods of any torch.nn.Module).
Recommended review order:
- `ivalue_importer.cpp` + `ivalue_import/functions*.py`
- `GlobalizeObjectGraph.cpp` + test case
- misc other stuff
The `torch::jit::CompilationUnit` is basically a backing store or
"context" holding all the possible functions in the program. The
previous code was not explicitly accessing this data structure, since it
just imported the `torch::jit::Function`'s that it saw attached to
methods.
Subtly, any time a TorchScript module called into a free function, the
free function gets incorporated into the torch::jit::CompilationUnit,
but doesn't show up anywhere when dumping the module, except in the
curious pattern:
```
%5 : Function = prim::Constant[name="adaptive_avg_pool2d"]()
%6 : Tensor = prim::CallFunction(%5, %input.1, %4)
```
That is, calls are indirect calls, and are accessed via `prim::Constant`
materializing a function object. Even stranger, the `name` attribute here
doesn't really even tell the full story -- it doesn't correspond to
anything. It turns out that the c10::FunctionType itself actually holds
a pointer to the `torch::jit::Function` in the compilation unit
directly (so there is actually no indirection in prim::CallMethod,
because any two values of the same FunctionType call the same
function!). E.g. when converting the IR to bytecode, the "name" is
ignored [code link](1d6bd15790/torch/csrc/jit/runtime/interpreter.cpp (L937)).
We do import `prim::CallFunction` as a `std.call_indirect` though
because it's more braindead to do it that way (it gets canonicalized to
a direct call easily).
With this, we can import BERT!
```
pt_util ~/tmp/bert.pt --import --exported-name=forward \
| npcomp-opt -torch-globalize-object-graph -inline -symbol-dce
```
https://gist.github.com/silvasean/fe7735ff5d065cc9216f7b0346d0e977
The test case here is a bit unconventional -- it isn't actually valid
Python. To figure out how to generate it I had to go search the PyTorch
codebase for "NumToTensor" and work backward. In this case I found
this
[code](649760e5f1/torch/csrc/jit/frontend/ir_emitter.cpp (L464))
which via a wild guess I was able to turn into a test case.
In this case it didn't take me too long, but when doing this kind of
"add a bunch of trivial stuff to bring up a real model", I'm starting to
think that we might skimp on test cases when it's fairly trivial and not
obvious how to test with a small test.