Before this PR, a statically shaped aten.convolution would generate
dynamically shaped linalg IR, and even `-canonicalize` would not be able
to fold it back into static shapes. This PR ensure that shape
calculations are folded on construction to directly generate statically
shaped linalg IR.
We achieve that by ensuring that `arith` ops involved in computing
shapes are created via `createOrFold`, so that later uses of
`getAsOpFoldResult` see constants instead of those ops.
For example
```
module {
func.func @forward(%arg0: !torch.vtensor<[32,336,112,112],f32>,
%arg1: !torch.vtensor<[336,168,3,3],f32>,
%arg2: !torch.vtensor<[336],f32>)
-> !torch.vtensor<[32,336,56,56],f32> {
%false = torch.constant.bool false
%int2 = torch.constant.int 2
%int1 = torch.constant.int 1
%0 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<int>
%1 = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<int>
%2 = torch.prim.ListConstruct : () -> !torch.list<int>
%3 = torch.aten.convolution %arg0, %arg1, %arg2, %1, %0, %0, %false, %2, %int2
: !torch.vtensor<[32,336,112,112],f32>, !torch.vtensor<[336,168,3,3],f32>, !torch.vtensor<[336],f32>, !torch.list<int>,
!torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int
-> !torch.vtensor<[32,336,56,56],f32>
return %3 : !torch.vtensor<[32,336,56,56],f32>
}
}
```
would result in
```
[...]
%padded = tensor.pad %2 low[%14, %15, %16, %17] high[%14, %15, %16, %17] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst : f32
} : tensor<32x336x112x112xf32> to tensor<?x?x?x?xf32>
[...]
%45 = linalg.conv_2d_ngchw_gfchw {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>}
ins(%expanded, %expanded_37 : tensor<?x2x?x?x?xf32>, tensor<2x168x168x3x3xf32>)
outs(%expanded_44 : tensor<32x2x168x?x?xf32>) -> tensor<32x2x168x?x?xf32>
[...]
```
and with this PR all shapes are static.
1. truncates zero-points to i32
2. modifies the default accumulator type for i8 from i64 to i32.
3. now uses the input dtype to infer accumulator dtype.
Updates:
- some unsupported modes are now going to report a match failure for
unsupported coordinate transformation modes.
- fixes a bug that was introduced in the last patch for resize (my
bad...)
- uses actual x and y coordinates for computing weights in bilinear
interpolation (rather than eps modified values)
- slightly simplifies the bilinear interpolation payload for readability
and performance
- passes coordinate transformation mode information from an onnx.Resize
op to the mode string for the aten._interpolate op. This allows us to
perform custom logic in the torch->linalg lowering to support
onnx.Resize options without losing the default behaviors of the
interpolate op.
The old lowering only had logic for 2d (i.e. images). this patch allows
interpolation for n spatial dims, which is required for some 3d vision
models such as
- onnx/models/pytorch-3dunet_vaiq_int8
which successfully compiles and runs with this patch.
* Enables assume_strict_symbolic_shapes on fx_importer imported
programs, indicating strict shape semantics.
* Reworks the view->reshape lowering to take advantage of strict mode
and do one of:
* Collapse to 0D
* Flatten/Unflatten when there is an inferred dim.
* Fallback to tensor.reshape
* Splits some test cases up and adds an attribute to control the old
pattern (so new corners can be tested in strict mode in isolation).
* Dynamic inferred mode needs upstream work to generalize expand_shape
(so that case is suppressed here).
* Deletes the assert from the existing tensor.reshape lowering if strict
shape mode is enabled (since the condition it is dynamically asserting
cannot happen).
This is part 1 of ~3, formatting all miscellaneous text files and CPP files matched by a first run of pre-commit. These tend to be low change-traffic and are likely not disruptive.
Subsequent patches will format Python files and remaining CPP files.
Sparse tensor conversions are represented by special aten operators.
This PR ensures the conversions are recognized (instead of failing the
full torch aten lowering to linalg).
We can map to `tensor.reshape` for handling multiple output dynamic
shapes. Later we can perform a more complex analysis for indentifying
expand/collapse cases from the tensor.reshape.
Initially we planned to handle this identification at the `torch` level
however it will be easier to handle once converted to core
mlir-dialects.
Align corner modes which select what the corners mean.
Either the center of the corner points or the edges of the edge points.
---------
Co-authored-by: Rob Suderman <rob.suderman@gmail.com>
The `convertTensorToElementType` function expects it's argument to have
a valid tensor type that is not `Torch::NoneType`. This PR checks that
the bias tensor is not of type `Torch::NoneType` before calling
`convertTensorToElementType` on the bias tensor argument in the
`matchAndRewrite` member function of the `ConvertAtenConvolutionOp`
class.
Fixes https://github.com/llvm/torch-mlir/issues/2866
Some backends / downstream projects expect that a "fully converted"
program has no remaining ops or attributes from the original dialect(s).
This preserves sparsity at the most obvious places of lowering TORCH
tensors to MLIR RankedTensorType tensors. Other places are marked for
audit. With some initial lowering tests.
This replaces the lowering of aten.cat with tensor.concat, allowing more
efficient handling of concatenations in downstream flows. The refbackend
populates concat decomposition patterns that can be used to recover the
previous lowering.
Despite aten.mm requiring the input and output types match, we still opt
to maintain signedness semantics in case later passes try to do any sort
of integer type narrowing.
The logic for lowering the aten view op to linalg is fairly complex.
In this PR I have tried to follow all non-failing paths through the
lowering and add unit tests where they're missing.
There is 1 logical change to the lowering: redundant tensor.cast ops
(same source and destination type) are folded.
When importing dynamic shaped programs from Dynamo, via torch.compile or
torch.export, we can assume that strict symbolic shape checks have been
done prior to generating torch IR. Among other shape checking, this
eliminates the case where an unknown dimension can be dynamically '1' in
a way that signals a broadcast.
Adds a `isAssumingStrictSymbolicShapes` utility which consults a
`torch.assume_strict_symbolic_shapes` attribute on an enclosing scope
and returns true if present.
In the linalg pipeline, many runtime checks are elided when this returns
true.
This commit adds the support for index.Tensor op when the index values
are negative. This commit wraps around the index values by checking
their values at run time.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit makes the following changes needed to update bump LLVM:
- Replace `linalg.init_tensor` with `tensor.empty` (see:
https://reviews.llvm.org/D135129)
- Replace `NoSideEffect` with `Pure` (see
https://reviews.llvm.org/D135505)
- Replace `body` region accessor for `ReduceOp` and `ReduceWindowOp`
with `getBody`
- Fix incorrect use of `tosa::ReduceSumOp` in `AtenNativeLayerNormOp`
conversion pattern. The result type of `tosa::ReduceSumOp` must have
the same rank as the input type. (see:
https://www.mlplatform.org/tosa/tosa_spec.html#_reduce_sum)
Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>
Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>
follow up #761:
This patch updates the `torch_mlir::convertTensorToMlirElementsAttr()`
method to enable the creation of tensors whose base type is Float16.
This patch also adds a test to validate the IR generation, and it
updates the test for importing tensors of various types.
Prior to this patch, the torch dialect included `AtenTriuOp` for
computing the upper triangular part of the input matrix, but there was
no code for lowering the op to the linalg dialect.
This patch adds code to generate a `linalg.generic` operation that
compares indices (computed using `linalg.index`) to choose between zero
or the original value (using `arith.select`). The lowering fails if the
number of dimensions are less than two. This patch also adds a few
end-to-end tests.
This commit adds the decomposition of `aten.adaptive_avg_pool2d` op into
`aten.avg_pool2d` op. The current decomposition only supports cases where
input size is equal to the output size.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
In addition to updating the llvm-project submodule, this patch also:
1. updates shape functions and tests so that `func` and `call`
operations refer to the `func` dialect
2. avoid duplicate registration of dialects
This patch updates the `torch_mlir::convertTensorToMlirElementsAttr()`
method to enable the creation of tensors whose base type is BFloat16.
This patch also adds a test to validate the IR generation, and it
updates the test for importing tensors of various types.
The updated LLVM code includes a patch to create bfloat16 array
attributes, thus enabling a different patch to torch-mlir to flesh out
support for the bfloat16 type.