Commit Graph

29 Commits (a7449785ec5fa7f0093cf2eb719f6aa8f9fe3507)

Author SHA1 Message Date
Ashay Rane 711646d095
mhlo: migrate conversion to stablehlo (#1840)
This patch replaces all MHLO operations with their StableHLO
counterparts and adds a validation pass to ensure that no MHLO operations
remain before translating all Stablehlo operations to the MHLO dialect
for further lowering to the Linalg dialect.

This patch also updates all lit tests so that they refer to the
`convert-torch-to-stablehlo` pass and so that they check for StableHLO
operations.
2023-02-02 07:29:47 -06:00
Ramiro Leal-Cavazos 3260a1ea6e
Allow passing traced `torch.nn.Module`s into `torch_mlir.compile` (#1743)
This commit adds support for passing to `torch_mlir.compile` the
result of running `torch.jit.trace` on a model by relaxing the
condition that checks if the model is already in JIT IR to allow any
`torch.jit.ScriptModule`.

Fixes https://github.com/llvm/torch-mlir/issues/1739
2022-12-22 08:39:55 -08:00
Vivek Khandelwal ef39b9ebb4 build: manually update PyTorch version
Set PyTorch and TorchVision version to nightly release 2022-12-05.

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-12-05 22:44:32 +05:30
Tanyo Kwok bbcdb38d99
Revert "Decompose torch.slice_scatter (#1622)" (#1659)
This reverts commit f3f2f10030.
2022-11-30 12:47:13 +08:00
Daniel Ellis e2de20575f
Automatically strip overloads for FX-based models. 2022-11-29 22:19:09 -05:00
Vivek Khandelwal d9cbf01d1e Revert "build: update llvm tag to 147fe9de"
This reverts commit e45ad313d4.
2022-11-25 12:41:56 +05:30
Vivek Khandelwal e45ad313d4 build: update llvm tag to 147fe9de
Summary of changes:
- Update call to `hasNoEffect` utility
- `KDynamicSize` value changed to
  `std::numeric_limits<int64_t>::min()` from `-1`
- Update tags
  llvm: 147fe9de29dc13c14835127b35280c4d95c8e8ba
  mhlo: 1944b5fa6062ec4c065d726c9c5d64f1487ee8c5

Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-11-24 12:44:43 +05:30
Tanyo Kwok f3f2f10030
Decompose torch.slice_scatter (#1622)
* Decompose torch.slice_scatter

* fix compilation error

* update file check

* fix ci

* fix i64 torch.tensor dtype
2022-11-23 18:14:12 +08:00
Sean Silva 3695ca83e6 [torch_mlir.compile] Handle the case of already-scripted models better
Closes #1582
2022-11-16 10:47:13 -08:00
Vivek Khandelwal d571d050fd [torch_mlir.compile] Fixes issue with the https://github.com/llvm/torch-mlir/issues/1557
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
2022-11-11 18:05:15 +05:30
Sean Silva cc468d2d16 [cleanup] Be consistent about apostrophe 2022-11-10 07:42:15 -08:00
Xiafei Qiu 4f173c6e0f
update llvm tag to a2620e00. (#1567)
- also update MHLO to 57ba12a2(branch greencommit/2022-11-07-a2620e00)
- change -pass-pipeline format to make tests pass.
2022-11-10 18:39:28 +08:00
Sean Silva 64914603fa [torch_mlir.compile] Add support for multiple exported methods
For AoT deployments models often have multiple exported methods.
This patch enables something like this:

```
class TwoMethodsModule(torch.nn.Module):
    def sin(self, x):
        return torch.ops.aten.sin(x)

    def cos(self, x):
        return torch.ops.aten.cos(x)

example_args = torch_mlir.ExampleArgs()
example_args.add_method("sin", torch.ones(2, 3))
example_args.add_method("cos", torch.ones(2, 4))
print(torch_mlir.compile(TwoMethodsModule(), example_args))
```

In the
[long-term](https://github.com/llvm/torch-mlir/blob/main/docs/long_term_roadmap.md#tools-for-advanced-aot-deployments)
we will need to reconcile this with our story for stateful models and the
backend contract being purely functional. For now, this provides some basic
infra that seems harmless. Arguably, we could tighten up the backend contract
even more to only allow a single compiled function which would prohibit this or
require building out a layer above.

Fixes #1557
2022-11-10 02:10:22 -08:00
Sean Silva 6403c0e56f torch_mlir.compile: allow custom backend_legal_ops set
Allow customizing `backend_legal_ops` for "torch" output type, since we
don't know which backend will be used (it might be a custom backend).
We don't allow customizing the `backend_legal_ops` for the other output
types (Linalg, TOSA, MHLO) since those backends control their set of
legal ops directly.

Fixes #1418
2022-10-12 04:21:22 -07:00
Daniel Ellis 4d47f1671a Reject dictionary inputs when tracing.
The underlying error message was misleading.  See https://github.com/llvm/torch-mlir/issues/1425
2022-09-30 16:02:35 -04:00
Gaurav Shukla 99093d0623 [TORCH] Add decomposition of `aten.linear` op
This commit adds decomposition of `aten.linear` op. Due to limited
support at tosa backend in case of dynamic dimensions, this
decomposition is currently disabled for tosa backend.

Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
2022-09-07 16:58:27 +05:30
Tanyo Kwok 512f2d9c23
Add decomposition to aten.native_layer_norm (#1332)
* Add decomposition to aten.native_layer_norm

* fix ci error
2022-09-02 09:29:22 +08:00
Sean Silva d7d67979b2 [cleanup] Change OutputType enum values to strings
The use of numbers was arbitrary and was preventing the enum values from
being put in the natural order.
2022-08-23 17:59:39 -07:00
Tanyo Kwok 2374098d71
[MHLO] Init end to end unit tests (#1223) 2022-08-23 16:47:21 +08:00
Tanyo Kwok 9176b5ed29
Add decomposition for aten.flatten.using_ints (#1161) 2022-08-23 11:52:54 +08:00
Sean Silva 01290d134a Add a way for backends to control which ops are legal for them.
We were already hitting many cases where backends different in terms of
the legal ops that they wanted. This caused unnecessary coupling between
the backends. Examples:
- https://github.com/llvm/torch-mlir/pull/1161
- https://github.com/llvm/torch-mlir/pull/862

This PR centralizes all compilation to go through `torch_mlir.compile`
so that we can keep the logic centralized there. We should move these
lists closer to each backend. Especially cases like
https://github.com/llvm/torch-mlir/pull/862 where blocking a
decomposition is necessary to avoid a crash emphasize that the set of
decompositions is tightly coupled to the backend, and should be
"controlled by the backend" and not something arbitrarily tweakable.

Also:
- Fix a small bug in the way we passed through the backendLegalOps
  option.
- Add better error messages in `torch_mlir.compile` for import errors.
2022-08-22 14:16:13 -07:00
Sean Silva 31727f81d8 torch_mlir.compile: Allow ignoring traced shapes
In some cases, users know that a traced graph is valid for a wider set
of shapes than they originally traced it with. Provide an option for
users to ignore the shapes in the traced graph when they know it is
legal.

Fixes #997
2022-08-04 10:18:34 -07:00
Ziheng Jiang c61c99e887
[MHLO] Init MHLO integration. (#1083)
Co-authored-by: Bairen Yi <yibairen.byron@bytedance.com>
Co-authored-by: Jiawei Wu <xremold@gmail.com>
Co-authored-by: Tianyou Guo <tianyou.gty@alibaba-inc.com>
Co-authored-by: Xu Yan <yancey.yx@alibaba-inc.com>
Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>
2022-07-20 16:18:16 -07:00
Sean Silva 93f1c3138b torch_mlir.compile: Allow OutputType as a string.
A lot of code was super verbose with `torch_mlir.OutputType.XYZ`. Now,
you can simply do `"xyz"`. I updated a few examples.
2022-07-08 17:37:27 -07:00
Sean Silva ccc858f531 torch_mlir.compile: Fix API footgun
use_tracing=True was behaving unexpectedly because the handling of
single arguments was happening after the torch.jit.trace call.

This also fixes the check to specifically test for a torch.Tensor or
TensorPlaceholder so that both lists and tuples would be correctly
handled.
2022-06-05 18:10:07 -07:00
Sean Silva 2af53ce434 torch_mlir.compile: Add OutputType.RAW
This can help with development and reporting bugs.
2022-05-19 03:41:43 -07:00
Sean Silva ef9e4c95f2 torch_mlir.compile: add support for dynamic sizes.
We do this by inroducing a TensorPlaceholder class, which can be used to
specify dynamic sizes. Internally, we canonicalize all example inputs
to TensorPlaceholder's.

This commit also adds some basic testing, which was missing before.
2022-05-17 07:02:32 -07:00
Sean Silva ab5ad7af09 Add tracing suport to `torch_mlir.compile`.
This also has a fix for the adjustment of types of TupleConstruct
inputs, which I found when using this new functionality on a model.

Some scenarios in tracing create situations where the output of
TupleConstruct has a more refined type than the inputs.

This introduces a helper `adjustStaticInformationForValues` which
subsumes the `derefineValues` helper and the tensor static information
adjustment we were doing.
2022-05-03 09:08:40 -07:00
Sean Silva 075464fa74 Add a new `torch_mlir.compile` method.
This makes it much easier to convert models and hides all the
ClassAnnotator complexity.

This also adds a new example `torchscript_resnet18_all_output_types.py`
which shows the ResNet18 IR for all output types.

Also,

- This moves `run_pipeline_with_repro_report` to
  `torch_mlir.compiler_utils`.
2022-04-20 10:06:01 -07:00