Commit Graph

273 Commits (aa7e77ee64160bfc4acf9281efd11b284facf411)

Author SHA1 Message Date
Vivek Khandelwal 2f231f394e
Bump Onnx Version to 1.16.1 (#3515)
This commit adds the support for new data types: uint4, and int4 and
uint8 tensor protos. Also, it moves some tests from failing to crashing.

Fixes https://github.com/llvm/torch-mlir/issues/3507

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-07-01 22:15:45 +05:30
Yuanqiang Liu 0e71a192d8
[Torch] support decomposition of aten.aminmax (#3513)
* unify decompisition of `aten.amax` and `aten.amin`
* support `aten.amax` with `dim=()`
2024-06-29 21:44:05 +08:00
Yuanqiang Liu f9fc741eef
[Stablehlo] support aten.any.dim, aten.min.dim (#3500)
* refactor `TorchToStablehlo/Reduction.cpp`
* add `ConvertAtenReduceWithIndicesOp` patterns
2024-06-29 16:53:33 +08:00
zjgarvey af236dab66
Add support for multiple dynamic reassociation dims for unflatten.int (#3504)
Addresses an issue with onnx.Gather lowering to linalg:
<https://github.com/nod-ai/SHARK-Turbine/issues/242>

The builder for tensor.expand_shape, without an explicitly provided
output shape, fails to infer an output shape in the case of multiple
dynamic reassociation dims. I tried adding the output shape explicitly
for tensor.expand_shape, but ran into compilation issues later on (see
<https://github.com/iree-org/iree/issues/17760>).

This PR adds support by lowering this op to tensor.reshape when multiple
dynamic reassociation dims are provided.
2024-06-28 09:59:51 -07:00
Jiawei Wu f75cbb4df9
[torch dialect] emit aten.fmax/fmin and add decomposition patterns (#3510) 2024-06-29 00:07:55 +08:00
Aart Bik 1f73895f93
[torch-mlir] bump to llvm/llvm-project@9b78ddf3b2 (#3491)
This bump triggered an upstream assert. Includes a WAR for #3506.

Also includes several things I needed to do to repro:

* When TORCH_MLIR_TEST_CONCURRENCY=1, test runs will be printed.
* Added TORCH_MLIR_TEST_VERBOSE=1 handling to enable verbose mode
(useful on CI).

---------

Co-authored-by: Stella Laurenzo <stellaraccident@gmail.com>
2024-06-27 19:28:02 -07:00
Ramiro Leal-Cavazos e29191bd08
[LINALG] Broadcast `values` to shape of slize in `index_put` (#3487)
The `index_put` operation, `input[indices] = values`, allows for the
values to be any shape that is broadcastable to the slice
`input[indices]`. This commit adds broadcasting support to the Linalg
lowering of `IndexPutHackedTwinOp`.

Fixes: #3465
2024-06-26 08:59:49 +00:00
zjgarvey d2bc70f188
[TorchToLinalg][ONNX] Add Basic Determinant Support (#3481)
This adds support for a few ops:

- torch.linalg_det
- torch._linalg_det (if the LU and pivot returns are unused)
- onnx.Det

An scf loop is used, since the row reduction algorithm applied here has
some loop-carried dependencies.
The current support being added here is very basic, and only works if no
permutations are required during row reduction, and assumes the matrices
are non-singular.
2024-06-25 13:34:19 -05:00
zjgarvey 368fabf0c1
[ONNX] Basic Support for DeformConv (#3469)
This adds a torchvision op to torch-mlir and a path from onnx.DeformConv
to torchvision.deform_conv2d.

I'm not implementing the torch->linalg lowering for the torchvision op
yet, but posting this PR to get feedback on some of the choices being
made here and to flesh out the onnx frontend a bit.
2024-06-25 12:16:51 -05:00
Branko Trifkovic 98c6971a01
Implement lowering of torch.aten.triu_indices (#3451)
Closes
[nod-ai/SHARK-Turbine/issues/709](https://github.com/nod-ai/SHARK-Turbine/issues/709)

---------

Co-authored-by: Branko Trifkovic <branko.trifkovic@syrmia.com>
2024-06-21 16:16:38 -07:00
Matthias Gehre acd57a3520
Support fake_quantize_per_tensor_affine_cachemask (#3477)
Add a new op with shape/dtypes and decompose into
`fake_quantize_per_tensor_affine` when the second result is unused.

The xfail_set change is on ONNX because torch cannot export this op to
ONNX.
2024-06-21 07:15:31 +00:00
Vivek Khandelwal d29ad4dfbd
[ONNX] Fix Onnx.Hardsigmoid lowering (#3239)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-06-21 11:18:14 +05:30
Xinyu Yang c7d52f63b4
[stablehlo] add aten::_int_mm lowering (#3474)
as title
2024-06-20 16:10:31 +08:00
Branko Trifkovic 676fa8cc09
Implement lowering of torch.aten.renorm (#3388)
Closes
[nod-ai/SHARK-Turbine/issues/689](https://github.com/nod-ai/SHARK-Turbine/issues/689)

---------

Co-authored-by: Branko Trifkovic <branko.trifkovic@syrmia.com>
2024-06-17 10:40:57 -07:00
ptrifunovic98 4555629246
Implement lowering of torch.aten.kthvalue (#3360)
Closes
[nod-ai/SHARK-Turbine#620](https://github.com/nod-ai/SHARK-Turbine/issues/620)
2024-06-15 11:18:39 +05:30
Xinyu Yang 6f94c7b0aa
[Torch] Add support for Meshgrid (#3462) 2024-06-14 23:59:08 +08:00
Wu Yuan a02e14e971
[FxImporter] Add aten._scaled_dot_product_flash_attention_for_cpu to default decomposition table (#3456) 2024-06-14 10:52:09 +08:00
Phaneesh Barwaria 919b599ebe
onnx.MaxPool add atenMaxPool1d lowering support (#3452)
fixes #3422
2024-06-13 15:37:11 +05:30
Chi_Liu ae6f5e8251
[ONNX] Fix AveragePool attributes support (#3235)
Issues was found here https://github.com/nod-ai/SHARK-Turbine/issues/643
    - [ONNX] Fix padding attributes for onnx.AveragePool
    - [Linalg] Add countIncludePad false support for AtenAvgPool1/2dOp
    - [Linalg] Add an avg_pool2d countIncludePad False e2e tests
    - [Linalg] Fix conflict with AtenAvgPool3dOp
    - [Linalg] Fix e2e crash with AtenAvgPool1dOp
    - [Linalg] Add dynamic dim support for AtenAvgPool2dOp
    - [Linalg] Fix AvgPool2dDivisorOverrideModule crash
2024-06-12 12:16:43 -07:00
Xinyu Yang 431d98b405
[Stablehlo] Add lowering of GridSampler Op (#3084)
Inspired by PyTorch decompositions.py.
See
ec58f1f74e/torch/_decomp/decompositions.py (L3923-L4086)
Only support paddingMode=0 or 1 and interpolationMode=0 or 1
2024-06-07 16:06:07 +08:00
Vivek Khandelwal 72837fbb3d
build: manually update PyTorch version (#3340)
Set PyTorch and TorchVision version to nightly release 2024-05-14.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-06-06 22:23:40 +05:30
penguin_wwy d59d0b6e5a
[Linalg] Promote type for compare tensor op (#3416) 2024-06-04 16:05:39 -07:00
Vivek Khandelwal 661be2d5b0
[MLIR][Torch] Add TorchToLinalg lowering for AtenAvgPool3dOp (#3030)
This commit also fixes the average pool op' test failing for
OnnxToLinalg lowering.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-06-04 22:12:34 +05:30
Yuanqiang Liu 50f7103098
[Stablehlo] support uint8 (#3367)
Support lowering unsigned integer type to stablehlo as discussed in
https://github.com/llvm/torch-mlir/pull/2184.

The things I do in this PR:
1. create `setupBackendTypeConversionForStablehlo()`,
`createFuncBackendTypeConversionForStablehloPass` and
`createFinalizingBackendTypeConversionForStablehloPass`.
2. remove `InferTypeOpInterface` from `torch_c.to_builtin_tensor`,
because it's different result type between linalg backend and stablehlo
backend:
```
// linalg backend
func.func @forward(%arg0: !torch.vtensor<[3],ui8>) -> tensor<3xf32> {
    %c = torch_c.to_builtin_tensor %arg0 : (!torch.vtensor<[3], ui8> -> tensor<3xi8>
    %0 = tensor.empty() : tensor<3xf32>
    %1 = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel"]} ins(%arg0 : tensor<3xi8>) outs(%0 : tensor<3xf32>) {
    ^bb0(%in: i8, %out: f32):
      %2 = arith.uitofp %in : i8 to f32
      linalg.yield %2 : f32
    } -> tensor<3xf32>
    return %1 : tensor<3xf32>
}
// stablehlo backend
func.func @forward(%arg0: !torch.vtensor<[3],ui8>) -> tensor<3xf32> {
    %c = torch_c.to_builtin_tensor %arg0 : (!torch.vtensor<[3], ui8> -> tensor<3xui8>
    %0 = stablehlo.convert %arg0 : (tensor<3xui8> -> tensor<3xf32>
    return %0 : tensor<3xf32>
}
```
3. fix stablehlo and linalg's conversion
2024-06-04 09:04:59 +08:00
zjgarvey 8995c90879
[TorchToLinalg] add support for quantized group conv (#3341)
This addresses 7 of the model failures I'm seeing in the test suite. See
[Shark-Turbine issue
#566](https://github.com/nod-ai/SHARK-Turbine/issues/566).

Need the op ```linalg.conv_2d_ngchw_gfchw_q``` to be added upstream
before merging this. See [llvm-project PR #92136
](https://github.com/llvm/llvm-project/pull/92136).

A small additional expansion to operand quantization is included in this
patch to address a model failure that occurs when unblocking the
quantized group convolutions in one of these onnx models.
2024-06-03 21:57:44 +05:30
Xinyu Yang 285b087a5d
[Torch] Emit rrelu and decompose it (#3250)
as title
2024-06-03 19:25:52 +08:00
Xinyu Yang 267052df2a
[Torch] decompose AtenLerpTensorOp (#3251)
as title
2024-06-03 15:25:09 +08:00
Xinyu Yang 23b53050de
[Torch]Support conv_transpose1d and conv_transpose3d (#3286)
1. Support conv_transpose1d and conv_transpose3d
2. Fix bugs of convertTransposedConv func in
lib/Conversion/TorchToStablehlo/Linear.cpp
2024-06-03 15:11:12 +08:00
Yuanqiang Liu 4e05e2cd1e
[Torch] support recompose of aten.split.with_sizes and aten.tensor_sp… (#3401)
…lit.sections

* support recompose to aten.split.with_sizes and
aten.tensor_split.sections
* fix recompose of aten.chunk
2024-05-31 09:56:47 +08:00
zjgarvey 074098d20c
Modifies onnx resize lowering to fix numerical issues (#3381)
Updates:

- some unsupported modes are now going to report a match failure for
unsupported coordinate transformation modes.
- fixes a bug that was introduced in the last patch for resize (my
bad...)
- uses actual x and y coordinates for computing weights in bilinear
interpolation (rather than eps modified values)
- slightly simplifies the bilinear interpolation payload for readability
and performance
- passes coordinate transformation mode information from an onnx.Resize
op to the mode string for the aten._interpolate op. This allows us to
perform custom logic in the torch->linalg lowering to support
onnx.Resize options without losing the default behaviors of the
interpolate op.
2024-05-30 20:34:37 -04:00
penguin_wwy e4be197efd
[FxImporter] Fix transpose rank zero (#3382) 2024-05-30 14:31:18 +08:00
penguin_wwy a5d3b546f8
[FxImporter] Fix embedding bag (#3387) 2024-05-29 14:46:21 +08:00
Yuanqiang Liu e0a5adb1db
[Torch] fix aten.linear's decomposition (#3391)
* support aten.linear with more rank.
2024-05-27 15:49:50 +08:00
Yuanqiang Liu 28aeb047c1
[Stablehlo] fix crashing on AtenEmbeddingBagSumExample_basic (#3389) 2024-05-26 12:34:56 +08:00
Yuanqiang Liu 5bb1a65ec9
[Stablehlo] refactor reduction lowering and support aten.amin (#3383)
* implement detailed lowering template pattern
`ConvertAtenReduceAllDimsOp` and `ConvertAtenReduceKeepDimOp`
* support `aten.amin`'s lowering.
2024-05-23 20:40:20 +08:00
penguin_wwy d924d0047f
[FxImporter] Fix primitive type in return (#3379) 2024-05-23 09:55:33 +08:00
Yuanqiang Liu f4bfe3f948
Bump llvm and stablehlo (#3377)
* bump llvm to 1e5f29af81a5f6fda308074f6345b9fba4faa71c
* bump stablehlo to c44d9af8d4879adccf1054cb61a53377ae5898cb
2024-05-22 23:28:45 +08:00
penguin_wwy 972d47b586
[FxImporter] Fix constant bool tensor (#3375) 2024-05-22 22:59:01 +08:00
penguin_wwy c2c1c2cfa4
[FxImporter] Fix failed e2e case (#3365) 2024-05-22 00:20:54 +08:00
Vivek Khandelwal b870729efe
[torch] Fix `onnx.MaxPool` lowering (#3133)
This commit fixes the onnx.MaxPool op lowering which was lacking the
indices result support.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-05-21 21:05:32 +05:30
Wu Yuan cc28d566ff
[Stablehlo] Support AtenTrilOp (#3359)
1. lower aten.tril to stablehlo composed by iota, select and so forth
2. add related e2e test cases
2024-05-20 15:49:24 +08:00
Yuanqiang Liu 8814d0ae64
[Torch] emit aten.dot and canonicalize it to aten.matmul (#3361)
* canonicalize `aten.dot` to `aten.matmul`
2024-05-18 22:45:14 +08:00
zjgarvey 6cba93b16e
[ONNX][TorchToLinalg] Add support for dynamic dims in Interpolate lowering (#3351)
Addresses [Shark-Turbine
#196](https://github.com/nod-ai/SHARK-TestSuite/issues/196)

Related tracker [Shark-Turbine
#566](https://github.com/nod-ai/SHARK-Turbine/issues/566)

Related onnx.Resize issues [Shark-Turbine
#616](https://github.com/nod-ai/SHARK-Turbine/issues/616)
2024-05-17 12:18:57 -07:00
Suraj Sudhir cba91a9b96
[ONNX][TOSA] Adds ONNX to TOSA e2e tests (#3358)
- Refactors OnnxBackend to be generic and consume any Torch backend.

---------

Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2024-05-16 21:44:26 -07:00
Xinyu Yang 7faba75696
[Torch] Decompose AtenMaskedScatterOp (#3353)
Co-authored-by: Yuanqiang Liu <liuyuanqiang.yqliu@bytedance.com>
2024-05-16 15:27:25 +08:00
Suraj Sudhir 0ca88028cd
[FxImporter][TOSA] Enable FxImporter to TOSA e2e tests (#3349)
Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2024-05-15 14:37:30 -07:00
NeverRaR 1d4859699b
MaxPool1d lowering to linalg (#3295)
Co-authored-by: root <root@i32b01216.sqa.eu95>
2024-05-10 22:05:26 +05:30
Vivek Khandelwal 10db310460
build: manually update PyTorch version (#3291)
Set PyTorch and TorchVision version to nightly release 2024-05-05.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-05-10 21:45:06 +05:30
penguin_wwy afe87d62b4
[Linalg] [Stablehlo] Promote type for compare scalar op (#3306) 2024-05-10 02:20:06 +08:00
Jiawei Wu 346a536c9f
[Torch Dialect] decompose all index_put-like op to aten.index_put.hacked_twin for stricter semantics (#3071)
This PR decomposes all index_put-like op to aten.index_put.hacked_twin for stricter semantics, i.e., no None index in indices argument.
2024-05-08 22:44:57 +08:00
Xinyu Yang abef114c0c
[torch] emit aten.Softshrink and aten.Hardshrink (#3248)
as title
2024-05-08 15:20:45 +08:00
zjgarvey 9be6877c22
Temporarily remove QuantizedMLP_basic (#3301)
See issue #3298
2024-05-07 14:32:13 -07:00
Vivek Khandelwal 17c3c15131
[ONNX] Add OnnxToTorch lowering for SoftmaxCrossEntropyLoss op (#3278)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-05-06 17:26:32 +05:30
Ze Zhang 11cd7cd9e7
Folder and Canonicalizer for PrimsConvertElementTypeOp and AtenMaxPool2dWithIndicesOp (#3272)
While playing with TorchDynamo on ResNet18. I notice following issues:

- `prims.convert_element_type` can’t be canonicalized even if the input
and the output share the same type

- `aten.max_pool2d_with_indices` is always used instead of
`aten.max_pool2d`, even if the second returned output (indices) has no
user

This PR fixes above issues by adding a folder to the
PrimsConvertElementTypeOp and a canonicalizer to the
AtenMaxPool2dWithIndicesOp


Lit test:

`cmake --build build --target check-torch-mlir-all`

---------

Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
2024-05-02 00:03:41 -07:00
Prashant Kumar 8c48135a42
[linalg] Fix bug for conversion of complex dtype (#3269)
The conversion of complex type wasn't supported or checked; the support
and required tests were added.

Fixes:
https://github.com/iree-org/iree/issues/17226#issuecomment-2087779158
2024-05-01 12:06:53 +05:30
Xida Ren (Cedar) 33eef15e42
Support onnx.If (#2825)
This is probably a decent PR for learning about blocks and regions.

If you're here to learn about that, consider also looking at
lib/Conversion/TorchToSCF/TorchToSCF.cpp

While this doesn't include an e2e test, it is tested downstream in
https://github.com/nod-ai/SHARK-TestSuite/blob/main/e2eshark/onnx/operators/If/model.py

---------

Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
2024-04-30 18:36:40 +00:00
zjgarvey 72349f7522
[TorchToLinalg] Adds Quantization Support for ConvTranspose (#3240)
I spent a little while debugging numerics issues with some tests similar
to the ones in quantized_models.py, only to find that pytorch's
quantized conv transpose is catastrophically inaccurate. I'll upstream
the issue and only leave the tests here which are of the form quantize
-> dequantize -> op.
2024-04-30 09:23:09 -07:00
Xinyu Yang f32ada993d
[Stablehlo] Improve the lowering of pool op in stablehlo (#3259)
1. Handle case stride == None
2. add avgpool3d maxpool1d  maxpool3d lowering
2024-05-01 00:06:13 +08:00
Xinyu Yang 0a5ff68d9d
[stablehlo] Support PrimsCollapseOp and PrimsSplitDimOp in stablehlo (#3230) 2024-04-29 17:40:30 +08:00
Vivek Khandelwal b1e2241479
[ONNX] Fix Onnx.Selu lowering and canonicalizer for IntImplicit op (#3221)
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-29 04:00:01 +00:00
Xinyu Yang 5684dc0441
[Torch] emit aten.celu and decompose it (#3247)
CELU(x)=max(0,x)+min(0,α∗(exp(x/α)−1))
2024-04-28 17:23:40 +08:00
Yuanqiang Liu 46c0f3cad0
[Torch] emit aten.log_sigmoid and decompose it to log(sigmoid) (#3246) 2024-04-28 11:47:43 +08:00
Stella Laurenzo 6877302504
[NFC reformat] Applies pre-commit formatting to Python files. (#3244)
This is a large change because prior to this point, Python files in the
project were not consistently formatted. This reformats them all with
black defaults.

Based on experience with prior projects, if you have a dev/long-term
branch with Python patches, you can minimize merge conflicts prior to
rebasing to include this commit by running `black` on your modified
Python files, squashing, and then rebasing/merging.
2024-04-27 14:16:31 -07:00
penguin_wwy 4fbe77a051
[dynamo] Verify the default value is passed by kwargs (#2998) 2024-04-28 02:18:33 +08:00
Rob Suderman 9a12a093a6
[onnx] Support `onnx.OneHot` lowering to `torch` (#3196)
[onnx] Support `onnx.OneHot` lowering to `torch`

Leverage the `aten.onehot` implementation along with `aten.transpose`
and `aten.where.scalar`.
2024-04-26 12:08:15 -07:00
Xinyu Yang ac85338491
[Stablehlo] Support AtenPowScalarOp, AtenTanOp, AtenAsinhOp, AtenAcoshOp, AtenAtanhOp, Atan2Op (#3233) 2024-04-26 15:47:44 +08:00
penguin_wwy 122eb69a98
[stablehlo] add aten left/right shift op conversion support (#3234) 2024-04-26 09:20:49 +08:00
Xinyu Yang 7030eacb76
[stablehlo] Support aten.any and aten.all lowering (#3217) 2024-04-25 11:15:52 +08:00
Yuanqiang Liu fab2696489
[Torch] support aten.trunc (#3219)
decompose `trunc(x)` to `sign(x) * floor(abs(x))`
2024-04-24 14:32:33 +08:00
Xinyu Yang e18bf42d0e
[stablehlo] Support ConstantPadNdOp in stablehlo (#3211)
as title
2024-04-24 14:15:11 +08:00
Xinyu Yang 42b9eccdb3
[Stablehlo] Fix AtenSumDimIntListOp when dim==None (#3216)
as titile
2024-04-24 11:25:46 +08:00
Xinyu Yang 4da3d714cc
[Torch] Support AtenProdOp on linalg and stablehlo (#3215) 2024-04-24 11:14:04 +08:00
zjgarvey a8ba865fca
[torch] Adds Quantization Support for `aten.relu` (#3177)
A choice was made to quantize the return type of Relu with a scale and
zero point copied from the input's quantization scheme. With this
choice, the torch-to-linalg conversion of quantized Relu essentially
computes max(input, zeroPoint) in the elementwise payload.
2024-04-23 11:01:36 -07:00
Yuanqiang Liu db3842f2e8
[Stablehlo] support lowering sinh & cosh to stablehlo (#3213) 2024-04-23 19:54:58 +08:00
Xinyu Yang c1967b607f
[Stablehlo] add AtenLog10Op, AtenLog2Op lowering to stablehlo (#3208) 2024-04-23 19:06:55 +08:00
Yuanqiang Liu 1f8123b5f0
[Stablehlo] support unary ops which promote to floating point (#3209)
* promote input to output element-type when lowering to stablehlo, so
that it could satisfy stablehlo's type constraints.
* split promote-to-fp unary ops from fp-only unary ops.
2024-04-23 17:57:12 +08:00
Yuanqiang Liu 797e4cd395
[Stablehlo] lowering asin, acos, atan (#3207)
* lowering asin, acos and atan to chlo ops.
2024-04-23 16:24:53 +08:00
Vinayak Dev cff2f084d4
[torch] Add OnnxToTorch lowering for `onnx.ReduceL2` (#3175)
Adds OnnxToTorch lowering for the ReduceL2 op.
2024-04-23 02:03:05 -04:00
Vivek Khandelwal 3c252cdd44
[onnx] Add `onnx-to-torch` lowering for random ops (#3193)
This commit adds the OnnxToTorch lowering for Onnx's RandomNormal, RandomNormalLike, RandomUniform, and RandomUniformLike op.
2024-04-22 22:28:07 +05:30
Vivek Khandelwal 6abc7371c8
[MLIR][TORCH] Fix OnnxToLinalg lowering issue for Squeeze and Unsqueeze op (#2991)
This commit also cleans up the OnnxToTorch lowering for the Squeeze and
Unsqueeze op and adds the support for handling edge cases.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-04-22 08:52:42 +00:00
penguin_wwy e5bdd71baf
[Torch] Emit and decompose prims.iota op (#3132) 2024-04-21 19:45:01 -07:00
penguin_wwy a60e84e5ee
[stablehlo] add aten.expm1 op conversion support (#3199) 2024-04-21 19:20:49 -07:00
Rob Suderman 8222637159
[onnx] Extend op version number of `onnx.ScatterElements` (#3195)
Version number was set too high. Lowered to support more cases allows
more tests to pass.

Co-authored-by: Robert Suderman <rsuderman@Roberts-MacBook-Pro.local>
2024-04-21 12:32:18 -04:00
Rob Suderman 733cace1df
[onnx] Fix `onnx.split` by directly handling slicing (#3194)
Previous implementation erroneously mixed up num_outputs with
slice_size. New version correctly computs the slice size and directly
performs slicing rather than leveraging `aten.split.tensor`. This is due
to `onnx` supporting a fixed number of splits making the size
computation more easily computeable when lowering to `aten` rather than
deferring to `aten.split.tensor`.

---------

Co-authored-by: Robert Suderman <rsuderman@Roberts-MacBook-Pro.local>
2024-04-21 12:31:56 -04:00
penguin_wwy b6b01602d3
[stablehlo] add aten.fmod.Tensor op conversion support (#3198) 2024-04-21 08:39:36 +08:00
penguin_wwy ea0ecb67be
[stablehlo] add aten.remainder.Tensor op conversion support (#3197) 2024-04-21 00:03:37 +08:00
Rob Suderman b01245c0e8
[onnx] Fix `onnx.Not` for non-bool inputs (#3187)
Need to perform a bool cast to support `onnx.Not` on non-bool inputs.
2024-04-19 11:32:24 -07:00
Xinyu Yang 790a697245
[Torch] Add folder for AtenIntOp, AtenFloatOp (#3189)
See unit test below:
```
// CHECK-LABEL:   func.func @torch.aten.tensor.float(
// CHECK-NEXT: torch.vtensor.literal(dense<1.000000e+01> : tensor<f32>) : !torch.vtensor<[],f32>
func.func @torch.aten.tensor.float() -> !torch.vtensor<[],f32> {
  %none = torch.constant.none
  %false = torch.constant.bool false
  %float1.000000e01 = torch.constant.float 1.000000e+01
  %67 = torch.aten.tensor.float %float1.000000e01, %none, %none, %false : !torch.float, !torch.none, !torch.none, !torch.bool -> !torch.vtensor<[],f32>
  return %67 : !torch.vtensor<[],f32>
}

// CHECK-LABEL:   func.func @torch.aten.tensor.int(
// CHECK-NEXT: torch.vtensor.literal(dense<45> : tensor<si32>) : !torch.vtensor<[],si32>
func.func @torch.aten.tensor.int() -> !torch.vtensor<[],si32> {
  %none = torch.constant.none
  %false = torch.constant.bool false 
  %int45 = torch.constant.int 45
  %67 = torch.aten.tensor.int %int45, %none, %none, %false : !torch.int, !torch.none, !torch.none, !torch.bool -> !torch.vtensor<[],si32>
  return %67 : !torch.vtensor<[],si32>
}

```
2024-04-19 22:17:06 +08:00
penguin_wwy 5a98c72c7f
[StableHLO] Fix aten.clamp.Tensor in FxImporter2StableHLO (#3190)
The FX importer will pass static shapes to the Torch dialect, so it
needs to generate a StableHLO that satisfies shape inference.
2024-04-19 17:08:29 +08:00
penguin_wwy 0a6073414d
[FxImporter] Add fx importer to stablehlo e2e test config (#3183) 2024-04-18 21:29:17 -07:00
penguin_wwy 6c4f7deebb
[stablehlo] add aten.clamp.Tensor op conversion support (#3185) 2024-04-19 10:55:27 +08:00
Rob Suderman be742a937d
[onnx] Update the failure triage for onnx (#3186)
Reclassifying what the source of failures are for various bugs so we can
reprioritize what failures are common.
2024-04-18 14:58:13 -07:00
Rob Suderman 0e77de996a
[torch] Add support for `torch.view` with dynamic shapes (#3164)
We can map to `tensor.reshape` for handling multiple output dynamic
shapes. Later we can perform a more complex analysis for indentifying
expand/collapse cases from the tensor.reshape.

Initially we planned to handle this identification at the `torch` level
however it will be easier to handle once converted to core
mlir-dialects.
2024-04-18 11:47:19 -07:00
Xinyu Yang d4313eed4a
[Torch] Add decomposition of RepeatInterleaveSelfInt Op (#3075)
Decomposition RepeatInterleaveSelfInt with following ops:
```python

def my_repeat_interleave(input, repeats, dim=None):
    if dim is None:
        # Flatten the input and then repeat
        return input.flatten().unsqueeze(-1).tile((1, repeats)).flatten()
    else:
        # Calculate the shape after repeat
        expanded_shape = list(input.shape)
        expanded_shape[dim] *= repeats
        # Repeat the tensor along the specified dimension
        repeat_shape = [1] * (input.dim() + 1)
        repeat_shape[dim + 1] = repeats
        input = input.unsqueeze(-1)

        # Tile and then reshape
        tiled = torch.tile(input, repeat_shape)
        # Rearrange and reshape
        repeated = tiled.reshape(*expanded_shape)
    return repeated

```

I passed the tests of stablehlo and linalg. When testing onnx, strange
things happened.
In torch-mlir's CI **torch_nightly** and my own
environment(torch==2.4.0.dev20240318+cpu), it can **pass the pass**.
In torch-mlir's CI  **torch_stable**, it **failed**.
The test case is `RepeatInterleaveSelfIntNoDimModule_basic`, the result
shape should be [120].
```python
class RepeatInterleaveSelfIntNoDimModule(torch.nn.Module):

    def __init__(self):
        super().__init__()

    @export
    @annotate_args([
        None,
        ([3, 4, 5], torch.float32, True),
    ])
    def forward(self, x):
        return x.repeat_interleave(2)


@register_test_case(module_factory=lambda: RepeatInterleaveSelfIntNoDimModule())
def RepeatInterleaveSelfIntNoDimModule_basic(module, tu: TestUtils):
    module.forward(tu.rand(3, 4, 5))
```
The error log is as follows:
```
  Unexpected outcome summary: (onnx)
  
  ****** Failed tests - 1 tests
      FAIL - "RepeatInterleaveSelfIntNoDimModule_basic"
          @ trace item #0 - call to "forward"
          @ output of call to "forward"
          ERROR: shape (torch.Size([6, 4, 5])) is not equal to golden shape (torch.Size([120]))
```

@rsuderman 
Would you please help me check what's wrong with my PR? Thanks a lot.
2024-04-18 06:27:51 +08:00
penguin_wwy 3aa81f78d8
[FxImporter] Replace local_scalar_dense in fx_importer (#3180) 2024-04-17 22:45:47 +08:00
Xinyu Yang d2ba956e69
[Torch] Support Aten_CastLongOp. (#3160)
By canonicalize Aten_CastLongOp into AtenToDtypeOp
2024-04-17 21:58:32 +08:00
penguin_wwy e4b11a0ab4
[FxImporter] Fix fx importer test config and clean xfail set (#3176) 2024-04-16 22:36:07 -07:00
penguin_wwy 398aeeec87
[FxImporter] Fix kwarg operands in fx importer (#3166)
Remove the `kwarg_only` limitation, for example
```
torch.add(x, 3.0, alpha=2)
```
compiled to
```
%0 = torch.aten.add.Scalar %arg0, %float3.000000e00, %int1
```
fix to
```
%0 = torch.aten.add.Scalar %arg0, %float3.000000e00, %int2
```
2024-04-16 13:17:05 -07:00
zjgarvey 7a1ad0d7c0
[TorchToLinalg] Adds Support for Remaining Quantized Matmul Cases (#3167)
The new cases added for quantized matmuls are:

1. vec-vec
2. vec-mat
3. mat-vec

each of which are now lowered to expand(s), quantized_matmul, and
collapse.
2024-04-16 09:28:28 -07:00
Vinayak Dev a0232e9ebd
[MLIR][TORCH] Add OnnxToTorch lowering for ReduceL1 Op (#3146)
Adds OnnxToTorch Lowering for the ReduceL1 op.
2024-04-16 12:24:46 +05:30