- When the signal tensor is real, onnx allows its shape to be
`[batch][length]` as well as `[batch][length][1]`.
- Onnx also allows to specify `frame_length` together with `window` (not
empty), given that it matches the window size.
- Adding checks on signal and result shapes.
Previously, if the value was absent, this conversion was creating a
dense resource of value 0 with shape equal to the result shape, then
later re-extracting a splat value. This only works if the shape is
statically known, and even when the shape is known, this is completely
unnecessary since the value's shape should be `[1]` and not the result
shape.
This patch simply sets the `splatvalue` to a `torch.constant.float 0.0`
when the onnx op's `value` attr is absent, and adds `nullptr` checks to
the subsequent conditionals to avoid them in the case where an `attr` is
not given.
Addresses <https://github.com/nod-ai/SHARK-Turbine/issues/831>.
- Add Torch to TOSA legalization for the following reduction ops:
+ aten.min.dim
+ aten.min
+ aten.max
+ aten.prod
+ aten.prod.dim_int
+ aten.all.dim
- Add dtype casting support for reduce sum and prod ops
- Extend aten.max.dim legalization to a template to support aten.min.dim
legalization
- Update end-to-end tests sets in xfail_sets.py
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
Change-Id: I854dd6c0c55e570c1fb7242f20c85cf64d6e7fe0
Signed-off-by: Justin Ngo <justin.ngo@arm.com>
Bump forward and refactor inline global slots to no longer track via
symlinks. This appears to make the tests past until we manage to remove
torchscript work.
As titled, create a new decomposition for `aten.fmod.Tensor` to
`aten.div`, `aten.trunc`, `aten.mul` and `aten.sub`. Note that we only
use `aten.trunc` for floating point operations. This further gets
decomposed to `aten.where` etc. by other existing decompositions.
This decomposition now makes TOSA pass for a simple model with
`aten.fmod` while it makes `stablehlo` fail. For now, we disallow this
decomposition for `stablehlo`
---------
Co-authored-by: Srinath Avadhanula <srinath.avadhanula@getcruise.com>
The lowering pattern for `aten.T` uses transposition implemented via
`linalg.generic`. For downstream passes it is advantageous to use named
ops wherever possible, so this patch changes the lowering to use
`linalg.transpose` instead.
This PR add `floordiv` to the `PY_BUILTIN_TO_TORCH_OP`. For
`aten.mul.int` and `aten.floordiv.int` ops, we add new Canonicalization
Patterns as follow:
```
%1 = torch.aten.mul.int %input, %const-5
%2 = torch.aten.mul.int %1, %const-6
```
Will be replaced by
`torch.aten.mul.int %input, %const-30`
And
```
%1 = torch.aten.mul.int %input, %const-5
%2 = torch.aten.floordiv.int %1, %const-5
```
Will directly return `%input`
This PR also relaxes the `float` type constraint in TorchToTosa for the
`AtenRsubScalarOp` conversion.
To test:
`cmake --build build --target check-torch-mlir-all`
This patch add a test for 638ef14, which use `linalg.broadcast` instead
of `generic` for convolution bias.
Co-authored-by: Rongsheng Gao <gaorongsheng@huawei.com>
Supports the result with dynamic shape and scalar indices like
```
func.func @test_gather_scalar(%arg0: !torch.vtensor<[3,4,5],f32>, %arg1: !torch.vtensor<[], si64>) -> !torch.vtensor<[?,?],f32> attributes {torch.onnx_meta.opset_version = 13 : si64} {
%0 = torch.operator "onnx.Gather"(%arg0, %arg1) {torch.onnx.axis = 0 : si64} : (!torch.vtensor<[3,4,5],f32>, !torch.vtensor<[], si64>) -> !torch.vtensor<[?,?],f32>
return %0 : !torch.vtensor<[?,?],f32>
}
```
`Torch::AtenSqueezeOp` is referring to the result shape, so it will
failed on lowering if the result shape is dynamic.
New sympy type is introduced to represent integer infinity in upstream
PyTorch repo. Subsequently, sympy.oo is no longer used to represent
infinity upper bound for dynamic dimensions where the upper bound is
unknown. Instead `int_oo` is used to represent integer infinity. This
commit updates the `_sympy_int_to_int` utility in light of this change.
The `axis` attribute is optionally available. Added support by computing
the pad based on the axis values.
---------
Signed-off-by: Rob Suderman <rob.suderman@gmail.com>
- This PR adds new (and equivalent) more tensorized impl of
MelWeightMatrix which lowers all the way to linalg.
- [Ref Pytorch
Impl](https://gist.github.com/PhaneeshB/4e6dfcded3007b1b686fbe28f07a67cd)
- Thanks to @rsuderman for pointing out the difficulties [earlier
impl](#3503) posed during lowering to linalg and also for providing a
better numpy impl 🙏
This commit adds the shape info for the tensors created during the
decomposition of GroupNorm op.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
Now that the PyDev feature request pytorch/pytorch#117188 has been
completed, we can remove all the ad-hoc code that propagates sparsity
metadata and replace it with the built-int PyDev metadata for sparse
tensors. This removes a lot of code and also ensures sparsity is
consistent with the torch.sparse package for all cases.
Set PyTorch and TorchVision version to nightly release 2024-08-18.
This commit also updates the `scaled_dot_product_attention` op.
A new attribute `enable_gqa` has been added. As of now, only the
default value for the same is supported.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
This commit extends the OnnxToTorch lowering for BatchNormalization op
for supporting the case when training=True.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
This adds the `generate-runtime-verification` pass into the linalg
refbackend, and moves all tests that now abort at runtime into the crash
set, sorted by their respective errors.
I have fixed on set of errors found that way, which are mismatches
between the static dimensions we cast to and the actual dynamic
dimensions. This was caused by wrong annotations on the test cases, like
in
https://github.com/llvm/torch-mlir/pull/3615/files#diff-48bfbf41fcad5fa01b49197d251114f84a2b8de4f1d87ab938a061aedd1419b1R1931
This patch adds basic support for lowering graphs with per-channel
quantization. Per-channel quantized ops have to be excluded from
`FuseQuantizedOps` for now but can be used in QDQ quantized form.
Using this patch, we're able to import and execute (on the linalg
backend) graphs with per-channel quantization applied using the "new"
PyTorch 2.0 Export Quantization.
The saga of aligning onnx and torch padding conventions continues.
```python
onnx_pads = [low_x, low_y, low_z, high_x, high_y, high_z]
torch_pads = [low_z, high_z, low_y, high_y, low_x, high_x]
```
So not only is the lexicographical ordering hierarchy swapped (low/high
x spatial-dim -> spatial-dim x low/high) but the ordering in the the
spatial-dim specification is also reversed.
This patch properly reverses the pad ordering (and actually uses the
`shuffledPadding` to pad).
The pattern `m_OnnxListOfConstantInts` previously only checked if the
attr inside an `onnx.Constant` op is a `DenseResourceElementsAttr`, but
didn't handle `ElementsAttr`'s. This patch adds support for
`ElementsAttr` and provides an example of it's use via a lit test for
`onnx.Unsqueeze`.
`onnx.Shape` can select only a subset of indices using attributes. Add
support for these attributes.
---------
Co-authored-by: zjgarvey <47986913+zjgarvey@users.noreply.github.com>
Following up from the discussion in
<https://github.com/llvm/torch-mlir/pull/3550>, I've edited the lowering
to prevent OOB extracts in a more direct fashion (i.e., just clamping
directly).
I don't think this affects the lit tests at all, but I've tested the
changes in our external test suite at
<https://github.com/nod-ai/SHARK-TestSuite/tree/main/>. I found the
issue when I was unexpectedly getting `nan`'s along the output image
border for a resize test there.
Change linalg.matmul_unsigned to linalg.matmul with unsigned type_fn
Signed-off-by: Max Dawkins <max.dawkins@gmail.com>
Co-authored-by: Max Dawkins <max.dawkins@gmail.com>
The static uneven divisible AdaptiveAvgPool2d means that although the
input size is not an integer multiple of ouput size, but the kernel and
stride size can also be fixed (not dynamic). The derivation logic of
kernel and stride size is consistent with
torch/_decomp/decomposations.py:adaptive_avg_pool2d as described in the
following:
1. Stride Size
Firstly , derive the start index in each reduce operation according to
the output size (`n`), `start_index = ([0, 1, ..., n - 1] * input_size)
// output_size`. For each index `k`, if `k * (input_size % output_size)
< output_size`, then the current and previous stride keeps the same as
`input_size // output_size`. So suppose `(n-1) * (input_size %
output_size) < output_size`, the stride in the whole AdaptiveAvgPool2d
process keeps static, as `input_size // output_size`.
2. Kernel Size
torch/_decomp/decomposations.py:adaptive_avg_pool2d calculates a static
kernel size when the input/output sizes satisfy either of the two
conditions, `input_size % output_size == 0` or `output_size %
(input_size % output_size) == 0`. Here if `input_size % output_size ==
0`, then the kernel size equals `input_size // output_size`, otherwise
`input_size // output_size + 1.`
Torch has all scalars represented as i64 and f64 types which results in
extraneous trunc-extf commands. We can rework this by elliding
widen-narrow cases away.