Commit Graph

94 Commits (ad283c104339267fbe11cc7efefc02a6ad4d2d1e)

Author SHA1 Message Date
powderluv baa4383c44
Revert to using Pytorch paths for delocate (#1065)
Remove the linking of libtorch/ paths in delocate for CI builds
2022-07-15 19:51:59 -07:00
powderluv 479a8a8963
Remove libtorch downloads (#1058)
Remove all the libtorch downloads. If the user sets
-DTORCH_MLIR_USE_INSTALLED_PYTORCH=OFF then just build from src.

Doesn't change developer workflow since we still default to local
PyTorch versions.

TEST: Build and verify all tests (except one xfail quant) pass on linux
2022-07-14 17:16:51 -07:00
Ramana Radhakrishnan 6e68f27399
Fail to install x86_64 linux libtorch.so on other architectures. (#1053)
Found while trying to build torch-mlir on an AArch64 Linux VM, worth
a belts and braces to prevent such cases.

Change-Id: I89c6fccb62e666dbda0d9acac2d0ee43c2899e9b
2022-07-14 10:01:21 -07:00
Maksim Levental 1bb990afc7
Speed up libtorch build. (#1031) 2022-07-11 20:46:49 -05:00
powderluv ea2afce29a
Fix OSX nightly builds (#1032)
Set default OSX arch to x86_64. Release builds will override it.
Also update to the latest point release on Python 3.9x and 3.10x
2022-07-10 22:17:01 -07:00
Ashay Rane 874fdb7e42
build: improve robustness of cmake and shell scripts (#1018)
On my local machine, `unzip` didn't exist (producing a "command not
found" error), but CMake ignored the error.  Although the build did
succeed (because it found a previously-built version of libtorch), it
seems better to abort builds on such failures, so this patch checks the
return code of all external process invocations.

Along similar lines, this patch also updates the shell scripts in
`build_tools` to extensively use double-quoting to prevent unintentional
word splitting or globbing.  Since some of the scripts execute `rm`
while using shell variables, this patch also adds the preamble `set -u`
to abort execution if an undefined variable is referenced, so that we
reduce the chances of executing `rm -rf /` if the path expression
happens to refer to an undefined variable.
2022-07-06 14:39:30 -07:00
powderluv 33bfeda4c5
Enable libtorch caching and source builds (#1004)
Add an option to cache libtorch/ releases if you don't want to
download the latest. Add an option to enable source builds.

TESTS:
macOS: verify with / without cache downloads
       verify source builds -- shared and static

Linux: Build Tests and Release builds
2022-07-05 10:25:43 -07:00
powderluv 2b52da951b
Link against libtorch (#955)
This moves torch-mlir to link against libtorch on macOS and linux

TESTS: Tests pass. Tested release builds on linux and macOS
2022-06-30 12:40:17 -07:00
Bob Adolf b90837ee24
Temporarily revert support for custom op extensions. (#944)
The MacOS builders are having linking trouble with the extension library.
Until it's fixed, all support for op extensions is disabled. It should be
easy to restore once the issue is resolved.
2022-06-14 18:24:40 -07:00
Bob Adolf 0a7ba62438
Allow torch-mlir to support PyTorch extensions. (#895)
PyTorch allows new operators to be registered dynamically in modules.
Torch-mlir already makes it fairly straightforward to add support for
new operators, and this commit just extends that support to allow new
PyTorch ops to come from a external module.

This does *not* allow ops to be dynamically loaded into torch-mlir.
Torch-mlir must still be compiled with support built-in.

Add a `_torch_mlir_custom_op_example` subpackage to `torch_mlir` which
registers an demonstration op. It will not be imported by default when
importing torch_mlir. It's strictly for testing and documentation.

Adds an end-to-end test for the `torch_mlir_custom_op_example::identity` op.

With all these changes, we should now be actively testing PyTorch extension
support with all future patches.
2022-06-13 14:51:30 -07:00
Prashant Kumar 10c8e3c593 Add simple neural_net and bert_training scripts.
1. With the help of `make_fx` we are able to get the full training graph
   with weight updates.
2. NeuralNet_training passes. Bert_training passes after cherry-picking
   https://github.com/llvm/torch-mlir/pull/844.
3. TODO: Remove the functorch's dependency after make_fx moves to
   pytorch core.
2022-05-19 06:18:42 +05:30
powderluv d872f3e2ca
Build each OSX python version in an venv (#852)
Previously only system default versions were built. Now we build
binaries for both 3.9 and 3.10
2022-05-12 16:39:35 -07:00
powderluv e7f306ec2f
Use delocate to make portable wheels on OSX (#850)
Fix up wheels per python version on OSX
2022-05-12 14:16:32 -07:00
powderluv 0fb7a03ac9
Update build_macos_packages.sh
Set default OSX SDK to 11.0 not 11:0
2022-05-04 08:44:43 -07:00
powderluv fe1237b2a4
Provide a way to override MacOS target and arch (#818)
Useful when we are only building for one architecture.
2022-05-02 09:04:12 -07:00
Prashant Kumar 5192a4e9f3 Remove heavy_deps models that don't get serialized.
BART, BigBird and GPT2 are not being serialized and hence removed.
Also, changed the script to obtain the resnest model.
2022-04-29 17:21:25 +05:30
powderluv ef546e1137
Add a script to build and upload M1 snapshots (#801)
Uses the latest snapshot tags and adds the releases to same asset
directories so it can be run on a cronjob without a GH runner.
2022-04-28 14:50:58 -07:00
Vivek Khandelwal 4635d36efb [MLIR][TORCH] Add heavydep tests for torch benchmarks
This commit adds e2e heavydep tests for the torch benchmarks.

Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
2022-04-26 13:22:08 +05:30
powderluv 6d09c98b2f
Fix version information in Release builds (#788)
env vars seems to be lost in manylinux docker.
Use a version file like IREE does.
2022-04-25 14:13:17 -07:00
powderluv 7d9138f497
Update build_macos_packages.sh (#787)
Set the environment variable and export it since it doesn't seem to get passed down.
2022-04-22 15:48:03 -07:00
Prashant Kumar e9c785b04b Generate backward graph via functorch-aot module
Example to demonstrate the extraction of forward as well as
backward graph via Functorch's AOT module is added.
2022-04-22 20:58:35 +05:30
powderluv 4ef61aa27f
Minor buildsystem fixes (#778)
Sets up auto-pinning of latest torch-nightly
2022-04-21 15:53:00 -07:00
powderluv b03eac4224
Enable OSX (Intel, Apple Silicon Builds) (#776)
Update pinned pytorch version. Will submit a follow on PR to bump.
Also update artifacts directory
2022-04-21 10:47:28 -07:00
powderluv cc3a4a58ef
Add oneshot release snapshot for test/ondemand (#768)
* Add oneshot release snapshot for test/ondemand

Add some build scripts to test new release flow based on IREE.
Wont affect current builds, once this works well we can plumb it
in.

Build with manylinux docker

* Fixes a few issues found when debugging powderluv's setup.

* It is optional to link against Python3_LIBRARIES. Check that and don't do it if they don't exist for this config.
* Clean and auditwheel need to operate on sanitized package names. So "torch_mlir" vs "torch-mlir".
* Adds a pyproject.toml file that pins the build dependencies needed to detect both Torch and Python (the MLIR Python build was failing to detect because Numpy wasn't in the pip venv).
* Commented out auditwheel: These wheels are not PyPi compliant since they weak link to libtorch at runtime. However, they should be fine to deploy to users.
* Adds the --extra-index-url to the pip wheel command, allowing PyTorch to be found.
* Hack setup.py to remove the _mlir_libs dir before building. This keeps back-to-back versions from accumulating in the wheels for subsequent versions. IREE has a more principled way of doing this, but what I have here should work.

Co-authored-by: Stella Laurenzo <stellaraccident@gmail.com>
2022-04-21 02:19:12 -07:00
Sean Silva b69db60f85 Pin the Python package to the exact PyTorch nightly.
This avoids issues where PyTorch version drift has made things
incompatible.

One caveat is that you will need to specify
`-f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html
--pre` on the command line for pip to know where to find the nightly
packages (there is no way around this) -- this is easiest to do by
simultaneously passing `-r requirements.txt` on the pip command line.
2022-04-20 16:47:38 -07:00
powderluv 91d3e7ba15 Remove CCACHE settings and validate on OSX
Builds whl package for OSX. Need to validate smoke tests next
2022-04-14 01:32:49 -07:00
Sean Silva 3a96078571 Pin the CI to the latest working PyTorch.
I am investigating the breakage.

Also, fix "externals" rename in setup.py and some cases where we weren't
using `requirements.txt` consistently.

Also, fix a case where the packaging script would get confused due to
".." in the path name.
2022-03-29 15:02:17 -07:00
Sean Silva 52c330cca2 Fix some more uses of "e2e" that I missed in the last commit. 2022-03-28 19:09:56 +00:00
Sean Silva 0378c75b35 Centralize all test serialization logic. 2022-03-28 10:17:13 -07:00
Ahmed S. Taei 8383497704
[NFC] Rename external -> externals (#699) 2022-03-26 09:12:27 -07:00
Prashant Kumar 730cdcd071 Add hugging face `albert-base-v2` in torchscript_e2e_heavydep_tests
`albert-base-v2` for sequence classification is added in e2e_heavy_test.
2022-03-24 17:43:24 +05:30
Sean Silva 729402c3f4 Reduce compilation time for TorchOps.cpp.inc
The `assemblyFormat` stuff (which generates unrolled, per-op C++ code)
was taking up a lot of compile time, and all the ops are essentially
printed with the same logic. So this PR makes them all call the same
helper function. This is done by using
`let hasCustomAssemblyFormat = 1` and then implementing `FooOp::parse`
and `FooOp::print`.

Additionally, the `Generated*Ops.td` files are all collapsed into just
`GeneratedTorchOps.td` (there is no reason to have the files separate,
since the files are very large anyway so one is always having to search
within them -- editors don't care that the file to search is now a bit
bigger :) ).

This reduces TorchOpsODSGenerated.cpp compile time (which is now
GeneratedTorchOps.cpp) from 39 to 31 seconds on my machine. This is
actually less than I expected, but this PR is an overall cleanup to the
code anyway. The next step will be to introduce (better) functionality
upstream for sharding the TorchOps.cpp.inc file, so that we can truly
parallelize the O(#ops) costs. This is also necessary, because after
this PR, TorchDialect.cpp is now the slowest file to compile, due to the
`addOperations<... all the ops ...>` call, which needs to be shareded
too.
2022-03-21 14:42:26 -07:00
Sean Silva 3734f69119 Remove basic_mt from the heavydep tests
This was an aspirational goal at an earlier stage in the project where
the focus was heavily on programs with state, control flow, and
lists/dicts. We will circle back to such programs likely 2022H2 at some
point, but for now, having this test doesn't add much, since basically
nothing works or is being worked on.
2022-03-15 15:25:53 -07:00
Sean Silva a5fe0cf063 Introduce new shape library design.
See the documentation in `docs/shape_lib.md` and
`docs/adding_a_shape_function.md` for an overview of the system.

This completely overhauls how we represent shape functions. In
particular, RefineTypes does not infer shapes anymore (only dtypes).
Shape functions are now written in (TorchScript'able) Python.

Recommended review order:

1. Read `docs/shape_lib.md` and `docs/adding_a_shape_function.md`.
1. Code and tests for ReifyShapeCalculations, DropShapeCalculations.
1. Code and tests for SimplifyShapeCalculations.
1. shape_lib_gen.py
1. Code and tests for new RefineTypes pass.
1. Random folders/canonicalizers in TorchOps.cpp and associated test in
   `canonicalize.mlir`.
1. New ReadOnly trait inferred from the registry.
1. Any miscellaneous remaining stuff.

Example `-print-ir-after-all` for ElementwiseUnaryModule:
[IR lowering dump](https://gist.github.com/silvasean/e4dc8cbc8d00aac7819602e3cbd8e212).

Example `-print-ir-after-all` for ElementwiseBinaryModule:
[IR lowering dump](https://gist.github.com/silvasean/daf6860ecced732af3568af6b1899113).
2022-03-15 12:41:58 -07:00
Prashant Kumar 126dac3ded Cmake build commands fix.
The external projects torch-mlir and torch-mlir-dialects should be
placed inside double quotes.
2022-02-16 20:46:53 +05:30
Yi Zhang 869daf3c22 Add TMTensor dialect to torch-mlir
This is intended to explore support for non-structured ops that can't
be modeled by Linalg dialect. `tm_tensor.scan` and `tm_tensor.scatter`
are added as the first such ops. The dialect should aim to be
upstreamed in the future.
2022-02-15 16:45:38 -05:00
Sean Silva 4a8d05e4a5 Add torch_mlir snapshot packages.
This closely follows IREE's
[schedule_snapshot_release.yml](f2f153d394/.github/workflows/schedule_snapshot_release.yml (L1))
workflow.

The snapshot releases can be installed with:
```
python -m pip install torch_mlir -f "https://github.com/llvm/torch-mlir/releases"
```
2021-10-06 14:50:31 -07:00
Sean Silva 712445eaa8 Bring back Python packaging.
Will add a CI job that builds and uploads snapshot packages next.
2021-10-05 13:33:30 -07:00
Sean Silva dcab39146f Remove the last mentions of npcomp from torch-mlir
These snuck through.
2021-10-05 20:17:23 +00:00
Yi Zhang fadd76e9b8 E2e for MiniLM-L6-H384-uncased-sst2
Replace the original BertSequenceClassification with this new one.
The ops needed to support are identical.
2021-10-05 12:45:19 -04:00
Sean Silva f0ed9e2d8d Fix update_torch_ods.sh 2021-10-01 17:47:25 +00:00
Sean Silva 5b6902e31c Dual license the torch-mlir project.
This commit (with approval from all contributors) dual licenses
the torch-mlir project under both the standard LLVM license and the
standard PyTorch license. This will facilitate moving code between
torch-mlir and the two upstream projects.

The standard file comment is now:

```
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
```

See `LICENSE` in the project root for the terms of both licenses.
2021-10-01 10:46:08 -07:00
Yi Zhang 89225b0cd8 Add BertSequenceClassification model to e2e
Use torch tracing to get the module because the original model is not
TorchScriptable out of box.
2021-09-30 13:30:29 -04:00
Sean Silva 8b2c099914 Update llvm-project to 204d301bb1921431a853c0bfba32007c018df1d5
This brings in the fix for the obscure RefBackend bug we were hitting.
2021-09-28 17:38:10 -07:00
powderluv b55baf508a
Updates to Readme.md (#334) 2021-09-28 13:50:25 -07:00
Sean Silva 4fad753073 Move external/torch-mlir to the root of the repo. 2021-09-27 17:11:08 -07:00
Sean Silva 404bd74ddf Port the bulk of the remaining code to torch-mlir
This leaves no real code outside torch-mlir.

This also renames the "npcomp backend contract" to "linalg on tensors
backend contract" as the name of the abstraction layer that RefBackend
(IREE too) accepts.
2021-09-27 12:48:33 -07:00
Sean Silva 3dc9b4ee2f Remove some more old stray files. 2021-09-22 16:13:03 -07:00
Sean Silva 1a0b953ea7 Eliminate almost all mentions of IREE.
A few remain in examples/docs that will be naturally be updated in due
time.

This regresses the list support and the general direction of more widely
supported control flow, lists/dicts/globals that we were going for with
the TorchScript path. The idea is that we are deferring that work to
make torch-mlir a very clean standalone thing. We will reboot it,
probably using some of the tools of iree_pydm to make it simpler, and in
a more natural place (such as an iree-torch repo that depends on IREE and
torch-mlir to build a working PyTorch frontend solution for IREE -- it
was really weird that npcomp depended on IREE).
2021-09-22 16:06:38 -07:00
Sean Silva 5f3b1ce0b8 Fold torch_mlir_dialects python package into `torch_mlir`.
After this change, there are now just two subdirectories in the
`python_packages` directory in our combined build:
- `npcomp_core` with all the npcomp stuff
- `torch_mlir` with all the `torch-mlir` stuff.

The combined `torch_mlir` build will be packaged for use by `pip`.
There isn't anything super useful for wider use in `npcomp_core` so for
now we aren't going to package that one.
2021-09-17 09:27:49 -07:00