Strength the shape inference for aten.arange-like op by
1. registering aten.sub and aten.ceil.Scalar op and design folders for them.
2. register a new constant-like op: Torch::ConstantNumberOp and design canonicalizer for it.
This PR adds an `AllowedInModuleInitializer` trait to keep track of ops that are permitted in the module initializer. We have a handful of such ops that are produced by the IValue importer, and so this change avoids maintaining a list of ops in `TorchOps.cpp` that could lead to spurious merge conflicts, and help us integrate torch-mlir in our downstream compiler better. Please let me know if you'd prefer a better name for the trait itself. Feedback is welcome!
As @oroppas identified, literal strings that are over 16,380 characters
cause the MSVC compiler to throw an error (C2026), eventually causing
the Windows build of Torch-MLIR to fail because the length of the
generated MLIR for the shape library crosses the allowed threshold.
This patch fixes the problem by making the Python script generate one
literal string per line to satisfy the MSVC compiler.
Thanks to @oroppas for the bulk of the effort required to resolve this!
Summary of changes:
- Updated emitAccessorPrefix since the default value has changed
(https://reviews.llvm.org/D133179)
- Updated RefineTypes pass since Lattice::isUninitialized() is removed
(https://reviews.llvm.org/D132800)
- Updated MHLO tag so that it builds with the updated LLVM tag
- Disabled two tests that cause segfaults in the TOSA backend (see Issue
#1361)
* Add aten.frobenius_norm.dim op and init its conversion pattern to linalg and MHLO,
* run symbolic-shape-optimization before hlo-legalize-to-linalg to fit more mhlo e2e tests.
Summary of changes:
- Update the dataflow analysis in RefineTypes.cpp
- Add tosa-to-arith pass after tosa-to-linalg pass, since
tosa-to-linalg (and canonicalizations) can produce tosa.const() ops
- Fixed warning about not making `matchAndRewrite` as override
This commit adds decomposition of `aten.linear` op. Due to limited
support at tosa backend in case of dynamic dimensions, this
decomposition is currently disabled for tosa backend.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
- Update MHLO commit to build with LLVM commit hash 00d648bd
- Update TorchToMhlo code to work with Stablehlo
- Re-enabled two failing TOSA tests, thus resolving Github Issue #1231
Caught in the wild here:
https://github.com/llvm/torch-mlir/runs/8046660640?check_suite_focus=true
It is common for a missing dependency to only surface as an issue on the
CI machines since they have fewer cores which prevents a "race" that
happens to cause the dependency to be built before the dependent.
An earlier patch (bb47c166) incorrectly replaced the now-dropped
`OpaqueElementsAttr` with `SparseElementsAttr` in one place and with
`DenseElementsAttr` in another. This patch fixes the problem by making
both replacements use the dense-equivalent type.
We were already hitting many cases where backends different in terms of
the legal ops that they wanted. This caused unnecessary coupling between
the backends. Examples:
- https://github.com/llvm/torch-mlir/pull/1161
- https://github.com/llvm/torch-mlir/pull/862
This PR centralizes all compilation to go through `torch_mlir.compile`
so that we can keep the logic centralized there. We should move these
lists closer to each backend. Especially cases like
https://github.com/llvm/torch-mlir/pull/862 where blocking a
decomposition is necessary to avoid a crash emphasize that the set of
decompositions is tightly coupled to the backend, and should be
"controlled by the backend" and not something arbitrarily tweakable.
Also:
- Fix a small bug in the way we passed through the backendLegalOps
option.
- Add better error messages in `torch_mlir.compile` for import errors.
One of the simplifications made by the pass `RefinePublicReturn`
currently only happens if the tensor in question only has one
user. However, the current method of checking this does not correctly
handle the case of a user having multiple uses of the same
tensor. This commit makes sure only unique users are considered.