Handle both `torch.dequantize` and `torch.quantize_per_tensor` including
the op based quantization parameter tracking. This includes adding
`qint32` to torch types as it was missing during the initial type
inclusion.
For testing we only have `torch.int8` and `torch.float` types on
function boundaries as the `qint8` types require passing the scale
and zero point quantization information which is not supported yet.
The function `getTypeForScalarType` currently takes an argument to
specify the signedness of integer types. This is leakage of backend
specific requirements into the torch dialect world. Because
`getTypeForScalarType` is a utility function for the torch dialect, it
should only produce types that match the sign conventions used by
PyTorch (regular integers are signed and unsigned integers are
unsigned).
This commit removes the signedness argument from
`getTypeForScalarType`, and moves the backend specific handling of
integer types to the backend code.
When importing dynamic shaped programs from Dynamo, via torch.compile or
torch.export, we can assume that strict symbolic shape checks have been
done prior to generating torch IR. Among other shape checking, this
eliminates the case where an unknown dimension can be dynamically '1' in
a way that signals a broadcast.
Adds a `isAssumingStrictSymbolicShapes` utility which consults a
`torch.assume_strict_symbolic_shapes` attribute on an enclosing scope
and returns true if present.
In the linalg pipeline, many runtime checks are elided when this returns
true.
This commit also adds the support for non-unit output padding in the
case of transposed convolution.
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
Summary of changes:
- Replace call to `MemoryEffectOpInterface::hasNoEffect`
with `isMemoryEffectFree`.
- Make fix for the dynamic dims, since
`kDynamicSize` value changed to
`std::numeric_limits<int64_t>::min()` from `-1` in llvm
- `makeShapeLLVMCompatible` and `makeShapeTorchCompatible`
utilities convert shapes in order to remain consistent
with the Torch and MLIR semantics.
- Update tags
llvm: 147fe9de29dc13c14835127b35280c4d95c8e8ba
mhlo: 1944b5fa6062ec4c065d726c9c5d64f1487ee8c5
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
* build: update llvm tag to 74fb770d
This commit makes the following changes needed to update bump LLVM:
+ replace usages of `tensor::createPadScalarOp`, see https://reviews.llvm.org/D136493
+ Update file checks
This commit makes the following changes needed to update bump LLVM:
- Replace `linalg.init_tensor` with `tensor.empty` (see:
https://reviews.llvm.org/D135129)
- Replace `NoSideEffect` with `Pure` (see
https://reviews.llvm.org/D135505)
- Replace `body` region accessor for `ReduceOp` and `ReduceWindowOp`
with `getBody`
- Fix incorrect use of `tosa::ReduceSumOp` in `AtenNativeLayerNormOp`
conversion pattern. The result type of `tosa::ReduceSumOp` must have
the same rank as the input type. (see:
https://www.mlplatform.org/tosa/tosa_spec.html#_reduce_sum)
Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>
Co-authored-by: Ashay Rane <ashay@users.noreply.github.com>
Summary of changes:
- Updated references to the Arith dialect
(https://reviews.llvm.org/D134762)
- Switched to prefixed accessors for MemRef dialect
(https://reviews.llvm.org/D134995)
- Fixed warnings about signed/unsigned comparisons, ignored return
values, and unused variables
This commit lowers `aten.matmul` to `linalg.BatchMatmul` under the
following conditions:
1. The result of matrix multiplication must have batch dimensions,
i.e., rank greater than 2.
2. The resultant matrix must have at most 1 dynamic batch dimension.
It also handles broadcasting of batch dimensions when batch dimensions
of the matrices are broadcastable.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This patch adds support for the torch.linalg.vector_norm op to the torch
dialect, including the necessary shape function. It also extends the
conversion of reduction operators to support lowering of
AtenLinalgVectorNormOp, in addition to adding a handful of end-to-end
tests to validate the lowering.
There exist several opportunities to make this lowering optimal and
robust. For instance, in its current form, the translation does not
support ord = 0, +inf, or -inf. For L1 norms, we don't need to raise
each element to the power 1.0. Similarly, L2 norms could benefit from
strength reduction. Since the canonicalization pass is not able to
apply these optimizations, we should consider applying them during the
linalg lowering itself.
This commit adds support for aten.max_pool2d, aten.max_pool2d_with_indices,
and aten.avg_pool2d op for the cases where ceil_mode = true.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This helps keep things organized and also exposes more parallelism to
the build system. It seems though that most of the compile time is
actually spent in the headers though, so the wall time doesn't decrease
as much as I had hoped (and now that the headers are being included
multiple times, the cpu time actually increases a lot, sadly -- will try
to dig into this).