This implements the Onnx.NegativeLogLikelihoodLoss op using the
signature provided
[here](https://onnx.ai/onnx/operators/onnx__NegativeLogLikelihoodLoss.html)
by replacing it with a `NLLLossForward` op.
Additionally, I included a helper function `get_loss_reduction_enum` to
convert from a string `reduction` parameter to the corresponding
intended integer value since this is an operation that will be reused
for any loss function module. This differs from `get_reduction_enum` in
`TorchUpstream.cpp` which handles the `reduce` parameter from
`scatter_reduce` type operations.
Issues was found here https://github.com/nod-ai/SHARK-Turbine/issues/643
- [ONNX] Fix padding attributes for onnx.AveragePool
- [Linalg] Add countIncludePad false support for AtenAvgPool1/2dOp
- [Linalg] Add an avg_pool2d countIncludePad False e2e tests
- [Linalg] Fix conflict with AtenAvgPool3dOp
- [Linalg] Fix e2e crash with AtenAvgPool1dOp
- [Linalg] Add dynamic dim support for AtenAvgPool2dOp
- [Linalg] Fix AvgPool2dDivisorOverrideModule crash
There is currently no int16 quantization support in torch. This patch
adds a new mlir type to correspond to the missing "torch.qint16" type,
and enables lowering of quantization-related onnx ops using int16 types.
In follow-up patches, custom quantization logic for ops like
aten.matmul/aten.mm/aten.convolution may need to be revisited to allow
support for qint16. The passes in FuseQuantizedOps.cpp may also need
slight modifications.
This commit adds the lowering for SequenceAt, SequenceEmpty,
SequenceInsert, SequenceErase op
Signed-Off By: Vivek Khandelwal<vivekkhandelwal1424@gmail.com>
Supports asymmetric padding by performing a torch.nn.functional.pad on
the input before performing the convolution.
Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
This commit also adds the Torch declaration for aten.max_unpool2d and
aten.max_unpool3d op. The TorchToLinalg lowering for the same will be
added in a follow-up commit.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
This patch adds two `memref` passes to `torch-mlir-opt`, which already
occur in the pass pipeline
`torch-backend-to-linalg-on-tensors-backend-pipeline`. Additionally,
necessary op interface external models are included to address issue
#3352.
This addresses 7 of the model failures I'm seeing in the test suite. See
[Shark-Turbine issue
#566](https://github.com/nod-ai/SHARK-Turbine/issues/566).
Need the op ```linalg.conv_2d_ngchw_gfchw_q``` to be added upstream
before merging this. See [llvm-project PR #92136
](https://github.com/llvm/llvm-project/pull/92136).
A small additional expansion to operand quantization is included in this
patch to address a model failure that occurs when unblocking the
quantized group convolutions in one of these onnx models.
Updates:
- some unsupported modes are now going to report a match failure for
unsupported coordinate transformation modes.
- fixes a bug that was introduced in the last patch for resize (my
bad...)
- uses actual x and y coordinates for computing weights in bilinear
interpolation (rather than eps modified values)
- slightly simplifies the bilinear interpolation payload for readability
and performance
- passes coordinate transformation mode information from an onnx.Resize
op to the mode string for the aten._interpolate op. This allows us to
perform custom logic in the torch->linalg lowering to support
onnx.Resize options without losing the default behaviors of the
interpolate op.
This PR fixes the bugs for `Torch::AtenOneHotOp` by:
1) Using `Torch::kUnknownSize` as the default value for `numClasses` in
the pattern matching stage in `DecomposeAtenOneHotOp`
2) Adding `AtenIntScalarOp` to the patterns in `TorchToArith`
3) Handling both `int` and `float` types for `off` and `on` values in
`TorchOnnxToTorch` conversion
It also includes:
1) A new test in `TorchToArith/basic.mlir`, for `torch.aten.Int.Scalar`,
and
2) A new test in `decompose-complex-ops.mlir`, for `torch.aten.one_hot`
**Dependencies**
This PR is dependent on #3334.
I am trying to eliminate 'getWithLeastStaticInformation' in
DecomposeAtenTriuOp. Could you provide me with some suggestions?
@qingyunqu @zjgarvey
See issue https://github.com/llvm/torch-mlir/issues/3312
This commit fixes the bugs for the `onnx.OneHot` operator by:
1) Converting negative indices to non-negative indices
2) Handling both `int` and `float` types for `off` and `on` values
3) Using the correct result type
It also includes a new unit test.
Discord Thread:
https://discord.com/channels/636084430946959380/1238330633328005243
## Context:
[This](https://github.com/llvm/torch-mlir/blob/main/python/torch_mlir/fx.py#L61)
was updated to support e2e tests for the TorchDynamo frontend in
Torch-MLIR, where we run FX decompositions and import the FX IR to
generate Torch dialect, followed by
`torch-function-to-torch-backend-pipeline`, skipping only the shape/type
refinement for now. However, we should be able to skip many of the torch
simplification passes, as depicted in the [frontend
roadmap](https://github.com/llvm/torch-mlir/blob/main/docs/images/roadmap_frontend.png).
Based on IREE's TorchDynamo
[pipeline](https://github.com/iree-org/iree/blob/main/compiler/plugins/input/Torch/InputConversion/Passes.cpp#L29),
the only two passes we seem to require are: `ReduceOpVariantsPass` and
`DecomposeComplexOpsPass`. This is inline with our findings as well
based on initial exploration.
This PR creates a dedicated frontend simplification pipeline for
TorchDynamo / FX Importer which calls only `ReduceOpVariantsPass` and
`DecomposeComplexOpsPass`. We rely on the e2e fx_importer tests to
ensure we're not regressing by removing many of the passes that were
historically needed for TorchScript.
One notable change here is that we do not call the
`LowerToBackendContractPass` anymore, which used to call
`TorchSimplificationPipeline` iteratively until VerifyBackendContract
was clean. Some of this was required for the shape/type refinement to
converge, which seems a non-issue for Dynamo frontend. Do we anticipate
this (the iterative invocation of TorchSimplificationPipeline followed
by VerifyBackendContract) to be worth retaining in the Dynamo frontend
pipeline? If so, I can make those changes, PLMK.
This commit fixes the onnx.MaxPool op lowering which was lacking the
indices result support.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
The old lowering only had logic for 2d (i.e. images). this patch allows
interpolation for n spatial dims, which is required for some 3d vision
models such as
- onnx/models/pytorch-3dunet_vaiq_int8
which successfully compiles and runs with this patch.
* not to decompose `aten.amax` on `stablehlo` backend. Because it could
be lowering to `stablehlo.reduce` directly.
* lowering `aten.max.dim` to `stablehlo.reduce apply max` when
`AtenMaxDimOp.getIndices()` doesn't have users. It's more simple.
In constant folding progress, a new constant op will be created
according to the origin op's result type.
See the code in TorchDialect.cpp.
```cpp
Operation *TorchDialect::materializeConstant(OpBuilder &builder,
Attribute value, Type type,
Location loc) {
if (auto integerType = dyn_cast<Torch::IntType>(type))
return builder.create<Torch::ConstantIntOp>(loc, cast<IntegerAttr>(value));
if (auto floatType = dyn_cast<Torch::FloatType>(type))
return builder.create<Torch::ConstantFloatOp>(loc, cast<FloatAttr>(value));
if (auto numberType = dyn_cast<Torch::NumberType>(type)) {
if (auto floatValue = dyn_cast<mlir::FloatAttr>(value)) {
return builder.create<Torch::ConstantNumberOp>(loc, floatValue);
} else if (auto intValue = dyn_cast<mlir::IntegerAttr>(value)) {
return builder.create<Torch::ConstantNumberOp>(loc, intValue);
}
}
if (isa<Torch::BoolType>(type)) {
return builder.create<Torch::ConstantBoolOp>(loc, cast<IntegerAttr>(value));
}
if (isa<Torch::NoneType>(type))
return builder.create<ConstantNoneOp>(loc);
if (auto stringAttr = dyn_cast<StringAttr>(value))
return builder.create<ConstantStrOp>(loc, stringAttr);
if (auto elementsAttr = dyn_cast<ElementsAttr>(value)) {
// Only !torch.vtensor can be constant folded. !torch.tensor has
// non-trivial aliasing semantics which prevent deduplicating it.
assert(isa<ValueTensorType>(type) && "should be a vtensor type!");
return builder.create<ValueTensorLiteralOp>(loc, elementsAttr);
}
return nullptr;
}
```
So when the op has a tensor result type, it must be "ValueTensorType"
due to the **assert** statement. However, many fold methods in
TorchOps.cpp only have a judgment of "BaseTensorType".
As mentioned in issue #3290 , the difference between onnx.Transpose in
versions 1 and 13 is minimal, and therefore should be supported with the
same conversion pattern.
After running the model tests in SHARK-TestSuite, I noticed a few model
failures due to half-fusion.
Notably, RDN_pytorch_vaiq_int8 had a depth=5 convolution chain with
multiple AtenViewOp's.
This change enables more customization with operand quantization, and
generalizes the patterns QuantizeOperands and QuantizeTransposeOperands
to QuantizeOperandsPastCommutingOps.
This allows for passing quantization through operations which are
functionally unaffected by quantization, such as view-like ops. The
purpose of this change is to address a myriad of quantization issues
seen in quantized onnx models that have some reshape-like operations
sandwiched in between a dequant and something like a matmul (whose other
operand is immediately quantizable).
* Enables assume_strict_symbolic_shapes on fx_importer imported
programs, indicating strict shape semantics.
* Reworks the view->reshape lowering to take advantage of strict mode
and do one of:
* Collapse to 0D
* Flatten/Unflatten when there is an inferred dim.
* Fallback to tensor.reshape
* Splits some test cases up and adds an attribute to control the old
pattern (so new corners can be tested in strict mode in isolation).
* Dynamic inferred mode needs upstream work to generalize expand_shape
(so that case is suppressed here).
* Deletes the assert from the existing tensor.reshape lowering if strict
shape mode is enabled (since the condition it is dynamically asserting
cannot happen).