* LTC/TorchMLIR multi-output operations support
* Update torch-mlir jit lowering to support ops with dynamic number of outputs
* Added support for aten::split_copy, aten::split_with_sizes_copy
* Fix native function for aten::split; cleanup code
* Fix TorchMlirTensorList lowering
* Remove xfails
* [TOSA] Fix conversion for depthwise convolutions
* Add e2e tests for depthwise and grouped convolutions
Co-authored-by: Lucas Camphausen <lucas.camphausen@iml.fraunhofer.de>
When using custom ops, sometimes PyTorch will insert namespaces to the
abstract interpretation function name in the format:
`__torch__.{namespace_1}.{namespace_2}...{op_name}`. The extra
namespaces are not part of the abstract interpretation function name,
so it needs to be removed before generating the library of MLIR
snippets of abstract interpretation functions. This commit adds
support for removing the namespace information.
* [MLIR][TORCH] Fix aten.cumsum lowering for int32 input (#2351)
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
[Stablehlo] Add converter to stablehlo for aten.(Int,Float,Bool).Tensor op (#2340)
[Stablehlo] Add converter to stablehlo for aten.(Int,Float,Bool).Tensor op and configure crashing e2e sets for stablehlo backend.
update PyTorch version to 2.1.0.dev20230729 (#2354)
- torch version: 2.1.0.dev20230729
- torch commit hash: b638df0afb83572724032c824c64e481bb4499a0
- torchvision version: 0.16.0.dev20230729
Co-authored-by: Roll PyTorch Action <torch-mlir@users.noreply.github.com>
update PyTorch version to 2.1.0.dev20230730 (#2356)
- torch version: 2.1.0.dev20230730
- torch commit hash: 0ff243ff350268cc98fe03fa6364375ee2824742
- torchvision version: 0.16.0.dev20230730
Co-authored-by: Roll PyTorch Action <torch-mlir@users.noreply.github.com>
update PyTorch version to 2.1.0.dev20230731 (#2359)
- torch version: 2.1.0.dev20230731
- torch commit hash: 6298ac688f8caafe30d71ff2ea2e20fbb32065c7
- torchvision version: 0.16.0.dev20230731
Co-authored-by: Roll PyTorch Action <torch-mlir@users.noreply.github.com>
LTC->MLIR Debug Info support (#1922)
* LTC->MLIR Debug Info support
* SW-95317 Propagate Lazy->Jit->MLIR scope name.
* Enhance location information based on op names
Currently, the location information attached to the ops just considers
the filename, line number and column number. Attaching operation name
would help identify the type of computation by just looking at the
profile of execution.
* Update locations logic; updated debug-info.py test
* Use {scope}/{op_name} format to track names by default
---------
Co-authored-by: Gleb Kazantaev <gleb.kazantaev@cerebras.net>
Co-authored-by: Mark Browning <mark@cerebras.net>
Co-authored-by: Vimal Patel <vimal@polymagelabs.com>
build: update llvm tag to 41895843
Summary of changes:
- Update tags
llvm: 41895843b5915bb78e9d02aa711fa10f7174db43
mhlo: 4726d31f7025da66de0dea709bd56c462edb83c2
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
update PyTorch version to 2.1.0.dev20230802 (#2366)
- torch version: 2.1.0.dev20230802
- torch commit hash: c89b16917755c2abbef7b6420e340baf9ae8089e
- torchvision version: 0.16.0.dev20230802
Co-authored-by: Roll PyTorch Action <torch-mlir@users.noreply.github.com>
Change Python version from 3.10 to 3.11 in installation instructions (#2370)
Add CITATION file (#2371)
Add packaging as an install dependency (#2369)
Needed by `torch_mlir._version`. Resolves#2368.
[Torch Dialect] emit aten.masked_scatter and aten.masked_scatter_ op (#2358)
* [Torch Dialect] emit aten.masked_scatter and aten.masked_scatter_ op
update PyTorch version to 2.1.0.dev20230803 (#2372)
- torch version: 2.1.0.dev20230803
- torch commit hash: f89c73be3a3e8274d025ac46a33a780853841c9e
- torchvision version: 0.16.0.dev20230803
Co-authored-by: Roll PyTorch Action <torch-mlir@users.noreply.github.com>
Prevent failed stable CI job from cancelling nightly jobs (#2373)
The CI jobs that use stable PyTorch are currently not required to pass
in order for a patch to get merged in `main`. This commit makes sure
that if a CI job for stable PyTorch fails, it does not cancel the
other required jobs.
[Torch Dialect] emit aten.tile op and decompose it into aten.repeat (#2355)
update
update xfail sets
update xfail_sets
update
fix xfail_sets
update:
update
update:
update
parent 22e88d523b1970b2e904eb5421d49d987a3d255e
author jianzhe.xiao <jianzhe.xiao@bytedance.com> 1691114110 +0800
committer jianzhe.xiao <jianzhe.xiao@bytedance.com> 1691114119 +0800
[Stablehlo] Add converter to stablehlo for aten.(Int,Float,Bool).Tensor op (#2340)
[Stablehlo] Add converter to stablehlo for aten.(Int,Float,Bool).Tensor op and configure crashing e2e sets for stablehlo backend.
update PyTorch version to 2.1.0.dev20230729 (#2354)
- torch version: 2.1.0.dev20230729
- torch commit hash: b638df0afb83572724032c824c64e481bb4499a0
- torchvision version: 0.16.0.dev20230729
Co-authored-by: Roll PyTorch Action <torch-mlir@users.noreply.github.com>
update PyTorch version to 2.1.0.dev20230730 (#2356)
- torch version: 2.1.0.dev20230730
- torch commit hash: 0ff243ff350268cc98fe03fa6364375ee2824742
- torchvision version: 0.16.0.dev20230730
Co-authored-by: Roll PyTorch Action <torch-mlir@users.noreply.github.com>
update PyTorch version to 2.1.0.dev20230731 (#2359)
- torch version: 2.1.0.dev20230731
- torch commit hash: 6298ac688f8caafe30d71ff2ea2e20fbb32065c7
- torchvision version: 0.16.0.dev20230731
Co-authored-by: Roll PyTorch Action <torch-mlir@users.noreply.github.com>
LTC->MLIR Debug Info support (#1922)
* LTC->MLIR Debug Info support
* SW-95317 Propagate Lazy->Jit->MLIR scope name.
* Enhance location information based on op names
Currently, the location information attached to the ops just considers
the filename, line number and column number. Attaching operation name
would help identify the type of computation by just looking at the
profile of execution.
* Update locations logic; updated debug-info.py test
* Use {scope}/{op_name} format to track names by default
---------
Co-authored-by: Gleb Kazantaev <gleb.kazantaev@cerebras.net>
Co-authored-by: Mark Browning <mark@cerebras.net>
Co-authored-by: Vimal Patel <vimal@polymagelabs.com>
build: update llvm tag to 41895843
Summary of changes:
- Update tags
llvm: 41895843b5915bb78e9d02aa711fa10f7174db43
mhlo: 4726d31f7025da66de0dea709bd56c462edb83c2
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
update PyTorch version to 2.1.0.dev20230802 (#2366)
- torch version: 2.1.0.dev20230802
- torch commit hash: c89b16917755c2abbef7b6420e340baf9ae8089e
- torchvision version: 0.16.0.dev20230802
Co-authored-by: Roll PyTorch Action <torch-mlir@users.noreply.github.com>
Change Python version from 3.10 to 3.11 in installation instructions (#2370)
Add CITATION file (#2371)
Add packaging as an install dependency (#2369)
Needed by `torch_mlir._version`. Resolves#2368.
[Torch Dialect] emit aten.masked_scatter and aten.masked_scatter_ op (#2358)
* [Torch Dialect] emit aten.masked_scatter and aten.masked_scatter_ op
update PyTorch version to 2.1.0.dev20230803 (#2372)
- torch version: 2.1.0.dev20230803
- torch commit hash: f89c73be3a3e8274d025ac46a33a780853841c9e
- torchvision version: 0.16.0.dev20230803
Co-authored-by: Roll PyTorch Action <torch-mlir@users.noreply.github.com>
Prevent failed stable CI job from cancelling nightly jobs (#2373)
The CI jobs that use stable PyTorch are currently not required to pass
in order for a patch to get merged in `main`. This commit makes sure
that if a CI job for stable PyTorch fails, it does not cancel the
other required jobs.
[Torch Dialect] emit aten.tile op and decompose it into aten.repeat (#2355)
update
update xfail sets
update xfail_sets
update
fix xfail_sets
update:
update
update:
add support for adaptive_pool_id
update xfail sets
update xfail_sets
update
fix xfail_sets
update:
update:
* update
---------
Co-authored-by: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
* LTC->MLIR Debug Info support
* SW-95317 Propagate Lazy->Jit->MLIR scope name.
* Enhance location information based on op names
Currently, the location information attached to the ops just considers
the filename, line number and column number. Attaching operation name
would help identify the type of computation by just looking at the
profile of execution.
* Update locations logic; updated debug-info.py test
* Use {scope}/{op_name} format to track names by default
---------
Co-authored-by: Gleb Kazantaev <gleb.kazantaev@cerebras.net>
Co-authored-by: Mark Browning <mark@cerebras.net>
Co-authored-by: Vimal Patel <vimal@polymagelabs.com>
Doing `module.to('lazy')` only moves the module member tensors to the
device if they are created with `self.register_buffer` or
`self.register_parameter`. Since the `self.tensor` tensor in
`Add_Module` test is currently not created using the `self.register_*`
methods, it is not being moved from CPU to lazy device, which is
causing the test to fail on LTC backend. This commit uses
`self.register_buffer` to fix the test on LTC backend.
This commit also seems to fix the test for torchdynamo.
* RecomposeComplexOps: Remove dead slice op
* lib/Dialect/Torch/IR/TorchOps.cpp: Fold slice ops even when they are on non-value tensors
* lib/Conversion/TorchToTosa/TorchToTosa.cpp: Fix slice start/end out of range/none
* lib/Dialect/Torch/IR/TorchOps.cpp: AtenSliceTensorOp::fold: Fold slices that go from 0:int_max
* More tests for aten.split.Tensor
In PyTorch, the `NumberType` is equal to `Union[int, float,
complex]`. However, the abstract interpretation library was treating
the `NumberType` as `Union[int, float]`, resulting in type mismatches
when reifying certain dtype functions. This commit fixes the type
inconsistency by having the abstract interpretation functions take as
an input a `Union[int, float, complex]` for the ops that take
`!torch.number` inputs.
Single element tuples in Python need a comma after the
element. However, the `registry.py` file, which generates the expected
abstract interpretation function signatures, was not inserting the
comma. This commit changes the expected signature generator to add a
comma after the last element in any non-empty default tuple argument.
This commit adds the support for index.Tensor op when the index values
are negative. This commit wraps around the index values by checking
their values at run time.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
Set PyTorch and TorchVision version to nightly release 2023-05-16.
This commit removes the test `BaddbmmDifferentDtypesModule_basic`
since PyTorch expects all operands to have the same dtype.
Ref: 2abad0c184
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
check the return type of the division to figure out whether to use
the floating point implementation of a division or to use the integer.
the issue rose from the fact that the inputs are all integer but the
result was casted to floating point. The conversion then chose to
use the integer implementation of division which is not legal in tosa
when all the inputs get casted to floating point.
fix(TorchToLinalg): AtenDivScalarOp
upcast self operand as well if applicable, the self operand must also
be casted to float as it can be an integer.
* add support for mhlo
* Add Test for torch.ne
* fix torch.ne shape/add static test case
* add support for static torch.ne
---------
Co-authored-by: root <root@n31-177-039.byted.org>
The `copy_` op being replaced by `RecomposeSliceCopy_` operates on a
subset of the tensor being mutated, while the `index_put` op being
used to replace the `copy_` op operates on the entire tensor being
mutated. This means that the result type of the `index_put` should be
the type of the input to `index_put` and we need to make sure that
`copy_` does not have users before replacing to avoid type conflicts.
This commit also fixes the result type used for the
`AtenArangeStartStepOp`, and an off-by-1 error when creating the
indices vector.
Lastly, this commit also clamps the `end` value from the slice to the
size of the dimension.
Before inlining a global slot, the users of the global slot are
checked to see if they are `ReadOnly` or `MemoryEffectFree` to make
sure that the global slot is not being mutated. Because the op
`copy.to_vtensor` currently does not have the `ReadOnly` trait, if a
global slot is passed to `copy.to_vtensor`, the pass
`InlineGlobalSlots` will fail.
The op `copy.to_vtensor` is `ReadOnly`, since it does not modify the
contents of the input tensor; it simply makes a new copy. This commit
adds the trait as well as an e2e test that generates the case of a
global slot being passed to a `copy.to_vtensor`.
* feat: split pytorch requirements into stable and nightly
* fix: add true to tests to see full output
* refactor: add comments to explain true statement
* feat: move some tests to experimental mode
* refactor: refactor pipeline into more fine grained difference
* feat: add version differentiation for some tests
* feat: activate more configs
* refactor: change implementation to use less requirement files
* refactor: remove contraints used for testing
* fix: revert some requirement file names
* refactor: remove unnecessary ninja install
* fix: fix version parsing
* refactor: remove dependency on torchvision in main requirements file
* refactor: remove index url
* style: remove unnecesary line switch
* fix: readd index url
This commit adds dtype functions for all the torch ops that did not
previously have one and removes the pass `RefineTypes`, since the
abstract interpretation library now takes care of all the dtype
propagation.
All dtype functions added are tested except for
- `aten.embedding`
- `aten._embedding_bag`
- `aten.embedding_bag`
These functions need a change to the testing framework to allow
specifying the actual data inside the tensor used for testing. I will
fix this in a follow up patch.
Co-authored-by: Jiahao Li <liplus17@163.com>
Add support for lowering torch.aten.cat to tosa.concat
* add support for aten cat to tosa
---------
Co-authored-by: yifei <y.zhou@xilinx.com>
Co-authored-by: Lisa Liu <lingl@xilinx.com>
When the user does not specify the `stride` value in 2d pooling ops,
`stride` is given the value of an empty list. However, the current
lowerings for pooling ops assumed that the `stride` operand would
always be a list of two ints, leading to crashes when that was not the
case. This commit fixes the crashes by setting the value of `stride`
to `kernel_size` when `stride` is the empty list, since this is the
default `stride` value specified in PyTorch docs. See:
https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d
Bool tensors are represented in TorchScript as an array of
`int8_t`s. However, when importing them into Torch-MLIR, the importer
was assuming the array had `int32_t` elements, leading to the importer
reading into memory that was out of bounds. This commit fixes the
casting of the bool tensor.
The current decomposition for `aten.randn.generator` does not specify
the `dtype` argument of the empty tensors created to store the random
values. This leads to invalid IR when the output type of the `randn`
op is not the default PyTorch dtype.