Commit Graph

13 Commits (be3e74b647375d1c72f075bebf77dc31e74477a2)

Author SHA1 Message Date
Sean Silva 4fad753073 Move external/torch-mlir to the root of the repo. 2021-09-27 17:11:08 -07:00
Sean Silva d8f603a4e5 Remove old stuff in prep for move-to-root. 2021-09-27 17:11:08 -07:00
Sean Silva 35fa1a34cd npcomp-lsp-server -> torch-mlir-lsp-server 2021-09-23 21:39:31 -07:00
Sean Silva a25163fbfa Remove old RefBackend
It is superceded by the new one.
2021-09-22 15:33:28 -07:00
Sean Silva c464cb107f Add npcomp-lsp-server.
To use, do `ninja npcomp-lsp-server`, copy `build/bin/npcomp-lsp-server`
into your PATH somewhere, and then add
```
"mlir.server_path": "npcomp-lsp-server",
```
to your settings.json.

Also bump llvm-project to 2d9759c7902c5cbc9a7e3ab623321d5578d51687 to
bring in latest `mlir-lsp-server` changes.
2021-08-04 10:01:48 -07:00
Sean Silva 496051163f Rename npcomp-run-mlir to refback-run
This better represents its limited scope. This was causing confusion --
people were feeding it higher level ops that require frontend lowering.
2021-08-03 18:24:24 -07:00
Stella Laurenzo 2dbab50444
Rework the python build to a static assembly of MLIR+NPCOMP (#251)
* Adapt to python build system updates.

* Bump llvm to 310c9496d80961188e8d8f8ad306cdf44bd7541f (includes python build updates)
* Adds refback C-API.
* Re-layers all python builds.
* Rework CI.
2021-07-27 16:10:10 -07:00
Stella Laurenzo f6d7ee06ef Make torch_mlir compatible with binary PyTorch installations.
* This has been anticipated for a long time in that it is quite hard to keep C++ binary compatibility across a system landscape as diverse as PyTorch, LLVM, and this project. This is why we based the PyTorch extension on the MLIR and NPCOMP C APIs only: that is the only sane linkage story for the entire matrix.
* Removes the few LLVM'isms in torch_mlir that had snuck in, using either STL or PyTorch support utilities. The new rule here is that LLVM C++ includes are forbidden at this level and (as stated in the design), torch_mlir should use the PyTorch runtime and support libraries (not introduce an incidental C++ dependency on LLVM).
* Also deletes mnist-playground as it was proving impossible to keep the grid of PyTorch vs system ABI divisions functioning. I am open to a less drastic course here (optional/disabled by default?)
* This gets us pretty close to just using PyTorch's extension builder API, which will be nice for distribution (i.e. it integrates well with the PyTorch ecosystem for deployment). I ended up just simplifying the in-tree CMake support for now.
* Fixes #138
2020-12-14 09:51:00 -08:00
Sean Silva 81119aa0a1 Only build mnist-playground if Torch was found. 2020-10-19 15:43:01 -07:00
Stella Laurenzo af4edb63ae Start reworking towards a shared library build.
* Need to have a dag of shared library deps in order to interop across python extensions (as presented in ODM).
* Introduced add_npcomp_library and friends to mirror the MLIR setup.
* Adds a libNPCOMP.so shared library.
* Redirects tools and extensions to link against libNPCOMP.so (instead of static libs).
* Moves all libraries to lib/, all binaries to bin/ and all python extensions to python/. The invariant is that the rpaths are setup to have a one level directory structure.
* Reworks the _torch_mlir extension to build like the others (still need to come up with a consolidated rule to do this instead of open coded).
* Includes an upstream version bump to pick up needed changes.

Sizes with dynamic linking (stripped, release, asserts enabled):
  libNPCOMP.so: 43M (includes much of the underlying LLVM codegen deps)
  libMLIR.so: 31M
  _npcomp.so: 1.6M (python extension)
  _torch_mlir.so: 670K (python extension)
  npcomp-capi-ir-test: 6.3K
  npcomp-opt: 351K
  npcomp-run-mlir: 461K
  mnist-playground: 530K

Still more can be done to normalize and optimize but this gets us structurally to the starting point.
2020-10-09 16:02:58 -07:00
Sean Silva dd1fa2607f Add hopefully short-lived mnist-playground utility.
This unblocks backend progress while the PyTorch frontend work is coming
online. Hopefully we can delete this soon.

See tools/mnist-playground/README.md for more context on what this tool
is for, next steps, and current status.
2020-10-05 13:59:06 -07:00
Sean Silva ea822968fa Add bare-bones npcomp-run-mlir.
The code isn't super clean, but is a useful incremental step
establishing most of the boilerplate for future enhancements.
We can't print or return tensors yet so correctness TBD, but I've
stepped into the running code in the debugger so I know it definitely is
running.

This is the first step to building out an npcomp mini-runtime. The
mini-runtime doesn't have to be fancy or complex, but it should at least
be layered nicely (which this code and the current compiler interaction
with the "runtime" code is not). Now that we have boilerplate for e2e
execution in some form, we can build that out.
2020-05-28 18:37:11 -07:00
Stella Laurenzo 953ef89a30 Add npcomp-opt and lit runner. 2020-04-26 17:55:15 -07:00