Sparse tensor conversions are represented by special aten operators.
This PR ensures the conversions are recognized (instead of failing the
full torch aten lowering to linalg).
Summary of changes:
- Updated references to the Arith dialect
(https://reviews.llvm.org/D134762)
- Switched to prefixed accessors for MemRef dialect
(https://reviews.llvm.org/D134995)
- Fixed warnings about signed/unsigned comparisons, ignored return
values, and unused variables
The MacOS builders are having linking trouble with the extension library.
Until it's fixed, all support for op extensions is disabled. It should be
easy to restore once the issue is resolved.
PyTorch allows new operators to be registered dynamically in modules.
Torch-mlir already makes it fairly straightforward to add support for
new operators, and this commit just extends that support to allow new
PyTorch ops to come from a external module.
This does *not* allow ops to be dynamically loaded into torch-mlir.
Torch-mlir must still be compiled with support built-in.
Add a `_torch_mlir_custom_op_example` subpackage to `torch_mlir` which
registers an demonstration op. It will not be imported by default when
importing torch_mlir. It's strictly for testing and documentation.
Adds an end-to-end test for the `torch_mlir_custom_op_example::identity` op.
With all these changes, we should now be actively testing PyTorch extension
support with all future patches.
The updated LLVM code includes a patch to create bfloat16 array
attributes, thus enabling a different patch to torch-mlir to flesh out
support for the bfloat16 type.
This helps keep things organized and also exposes more parallelism to
the build system. It seems though that most of the compile time is
actually spent in the headers though, so the wall time doesn't decrease
as much as I had hoped (and now that the headers are being included
multiple times, the cpu time actually increases a lot, sadly -- will try
to dig into this).
This pass is added to lower ops, which can not be lowered
via the TorchToLinalg pass, such as `torch.bincount` op.
This pass also uses torch-mlir's TMTensor Dialect to lower the
complex ops.
Also add torch.bincount op lowering with the help of TMTensor dialect
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit moves the helper function which are common across
different torch-mlir conversion passes into a common directory
Utils.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit adds support for integer type inputs for
`AtenMaxOp`, `AtenSumOp`, `AtenSumDimIntListOp`.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
The view op allows for the new shape argument to have a -1 value for
one of the dimensions, and the op is expected to deduce the size of
that dimension by looking at the sizes of the other dimensions and
comparing it to the total number of elements in the original
tensor. This commit adds this functionality.
This commit does a couple of things. First, it fixes a bug in the
`linalg.generic` body of the `nll_loss_forward` lowering where the
`ignoreIndex` was being compared with the loop index rather than the
current element of the `target` tensor. This was not being caught by
the tests because they were not testing the case where `ingnoreIndex`
actually corresponds to a value in `target`. This has been fixed.
Second, this commit adds support for the `reduction` argument in
`torch.nll_loss_forward` as well as support for 1-D inputs. In order
to simplify the lowering code, I've refactored the code that creates
the `linalg.generic` ops for elementwise and reduction ops into static
functions, to avoid having boilerplate code for indexing maps, etc
that can be very error prone.
Note: The function `convertScalarToDtype` was moved to before all the
conversion patterns, but nothing in it was modified.
- This commit decomposes the `aten.batch_norm` op into the
`aten.native_batch_norm` op, instead of lowering it to the
`linalg.generic` op.
- It also adds run-time asserts in the `aten.native_batch_norm` lowering
to make sure that the shape of the weight, bias, running_mean, and
running_var must match the num of features.
- Since the `aten.native_batch_norm` op is not supported at TOSA backend,
all the modules that are dependent on the `aten.native_batch_norm` op
will fail and therefore they should be removed from the TOSA `passing`
set.
- It also moves `checkNotNone` to utility.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
This commit adds the op `PseudoAtenFillScalarOp` that represents
`AtenFill_ScalarOp` without the underscore. The approach is the same
as in commit dd998fa4d4.
Adding this op allows for a simpler and more consistent version of the
`empty` and `empty_like` op e2e tests.
- This commit adds lowering of `aten.le.Scalar` and `aten.ge.Scalar` ops
as a part of `convert-torch-to-linalg` pass.
- It also creates a new test script `elementwise_comparison.py` for all
element-wise comparison ops.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
- This commit adds lowering of `aten.Bool.Tensor` and
`aten.Float.Tensor` op as a part of `convert-torch-to-linalg` pass.
- It also adds support for returning bool types.
- It also fixes lowering of the `aten.Int.Tensor` op for non-zero rank
input tensors.
- If a scalar number is converted to a 0-d tensor and passed on to the
`aten.Float.Tensor` op, it folds to the scalar number.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
Some of the lowerings use the result type obtained from the op itself
to tell the `linalg::GenericOp` what the type of the result should be
rather than using the type of the result tensor given to the
`linalg::GenericOp`. This becomes a problem when the result type of
the op has static size information and the result tensor used in
`linalg::GenericOp` has dynamic dimensions, for `linalg::GenericOp`
expects the result type to be equal to the type of the output tensor.
This commit replaces the use of the result type from the op itself
with the type of the result tensor passed to `linalg::GenericOp`.
In order to not create too many dynamic/static versions of the same
e2e test, e2e tests have only been added to the ops that currently
fail when used with static sizes.
The lowering of aten::nll_loss_backward op has been added
from torch to linalg dialect. The changes has been made as
a part of -torch-convert-to-linalg pass.
Signed-off-by: Prashant Kumar prashant@nod-labs.com
This PR include the following pieces:
- Add torch `Generator` type. `Generator` type is converted to i64 in
refbackend type converter.
- Add seed managment support for the default global generator.
`torch_c.getNextSeed` op is used to get the seed. On refbackend, the
`torch_c.getNextSeed` is lowered to load/store from [0] of global
variable `default_generator` memref<i64> in `InsertRngGlobals` pass.
- Add `aten.uniform_` and testing as an example op for RNG ops. Add
`torch.pseudo.aten.uniform` op. It has the same operands and return as
the `aten.uniform_` from the op registry except for value semantics.
Note that to enable folding of the code coming from an example
like the ConstantPad2dStaticModule e2e test, support for other
operations had to be added/improved:
- aten::neg.int
- aten::eq.float
- aten::eq.str
- prim::Uninitialized
This commit adds lowering of `aten.threshold` op
This commit adds lowering of `aten.threshold_backward` op
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This involes the following 2 parts:
- Change refine type to propagate more static shape info.
- Get as much static shape info as possible when creating the result
tensor when converting to linalg.
This commit adds lowering of `aten.arange.start_step` op.
This commit decomposes `aten.arange` and `aten.arange.start` into
`aten.arange.start_step` op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
We only handle the expanding OR collapsing cases, we do not handle
expanding And collapsing happening at the same time or cases where
it's neither collapsing nor expanding like view of [2,3] for
3x2 tensor.
It's assumed that if a shape list element is got from
`aten.size(tensor, dim)` the corresponding dim is not splitted or
collapsed. This assumption makes it easier to deal with dynamic shapes.
- Added E2E support for `aten.eq.Tensor` and `aten.lt.Tensor` ops. Both
the operands are expected to be of the same type, i.e., type promotion
is not addressed as a part of this commit.
- Added E2E support for `aten.eq.Scalar` and `aten.lt.Scalar` ops.
Tensor operand type to Scalar operand type promotion has not been
handled in this commit.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
The existing implementation of `ConvertConstantTensorAllocOp<>` requires
a C++17 feature `if constexpr ()`. This commit removes the use of that
feature to support the implementation even for lower C++ versions.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
Add the required lowerings and correct test cases.
These op produce zero-d tensors and it was incorrectly mentioned in
refine types to produce 1d tensor of size 1.
- Templatize `aten.zeros` and `aten.ones` ops lowering.
- Add E2E support for `aten.empty` op.
- Add Integer type support in `aten.mul.Scalar` op lowering.
Signed-Off-by: Gaurav Shukla <gaurav@nod-labs.com>
`aten.gt.Tensor` op has been added in torch dialect and the
lowering of the op has been done to the linalg dialect.
Signed-off-by: Prashant Kumar <prashant@nod-labs.com>