This adds a basic e2e Config for TorchDynamo using
Linalg-on-Tensors/RefBackend.
But TorchDynamo is pretty orthogonal to
various other pieces, so it should compose nicely with variations like:
- Switching out all the backends (Linalg-on-Tensors, TOSA, MHLO)
- PyTorch functionalization and decompositions
- Taking the example inputs and compiling with all dynamic or all static
shapes without duplicating tests.
This adds it to the CI, but there are still a lot of XFAIL's.
This also adds a helper `from torch_mlir.dynamo import
make_simple_dynamo_backend` which simplifies some of the steps for
making a Torch-MLIR-based TorchDynamo backend. We include "simple" in
the name because we are going to be exploring various things next from
the long-term roadmap.
The next steps are:
- Burn down all the XFAIL's.
- Start working on the pieces from the [long-term roadmap](https://github.com/llvm/torch-mlir/blob/main/docs/long_term_roadmap.md).
- Add functionalization/decompositions into the TorchDynamo flow and
remove reliance on the current Torch-MLIR "frontend".
- Write a pure-Python direct FX->MLIR importer.
- Hook up the new PyTorch symbolic shape stuff.
- Explore PrimTorch decompositions for simplifying backends.
We want each build to be reproducible regardless of prior builds and
prior package installations, but pip, by default, uses cached packages
from previous invocations of `pip install`. As a result, the incorrect
dependencies downloaded in the RollPyTorch workflow in the main
repository cannot be reproduced in private forks of the repository. To
resolve this problem, this patch adds a `--no-cache-dir` flag to pip, so
that it fetches and inspects each requested package independent or prior
installations.
This patch makes a few small, but key, changes to enable ccache on
Windows. First, it replaces the hendrikmuhs/ccache-action action with
command line invocations to the ccache binary, since the action has two
bugs, one of which causes CI to refer to different ccache artifacts
before versus after the build on Windows whereas the other bug can
sometimes cause the action to incorrectly infer that the cache is empty.
Second, this patch slightly alters the cache key, so that our old cache
artifacts, which have grown too big, are eventually discarded in favor
of the new, smaller cache artifacts. Along the way, this patch also
keeps the RollPyTorch's cache artifact separate from the regular build's
cache artifact so as to keep these artifacts small, and also because the
RollPyTorch action is off the critical path for most contributors.
Finally, this patch makes small changes to the CMake file so that on
Windows, the ccache binary is added as a prefix, as recommended on the
[ccache Wiki](https://github.com/ccache/ccache/wiki/MS-Visual-Studio).
This patch updates the build_linux_packages.sh script so that when
PyTorch needs to be built from source, it is built _before_ building
LLVM and before building Torch-MLIR. The rationale behind this change
is that previously, when the PyTorch build was triggered through the
Torch-MLIR build, the PyTorch compilation added more entries to the
ccache artifacts. However, since we cache the PyTorch _binary_ (i.e.
the WHL file), there is no need to add the PyTorch compilation to the
ccache artifacts. By removing the PyTorch compilation files, we keep
the ccache artifact size small, thus reducing the number of evictions
when we exceed GitHub's allowed limit.
Without this patch, CI logs contained the line:
-- Linker detection: GNU ld
GNU ld is notoriously slow at linking large binaries, so this patch
swaps GNU ld with the LLVM linker.
Since the linker invocation is driven through the compiler, perhaps the
best way to use the LLVM linker is to tell the compiler which linker
binary to use. This patch adds the `-fuse-ld=lld` flag to all Linux
builds of Torch-MLIR in CI to make it use lld.
* ci: cache PyTorch source builds
This patch reduces the time spent in regular CI builds by caching
PyTorch source builds. Specifically, this patch:
1. Makes CI lookup the cache entry for the PyTorch commit hash in
pytorch-version.txt
2. If lookup was successful, CI fetches the previously-generated WHL
file into the build_tools/python/wheelhouse directory
3. CI sets the `TM_PYTORCH_INSTALL_WITHOUT_REBUILD` variable to `true`
4. The build_libtorch.sh script then uses the downloaded WHL file
instead of rebuilding PyTorch
* ci: warm up PyTorch source cache during daily RollPyTorch action
This patch makes the RollPyTorch action write the updated WHL file to
the cache, so that it can be later retrieved by CI that runs for each
PR. We deliberately add the caching step to the end of the action since
the RollPyTorch action never needs to read from the cache, although
executing this step earlier in the process should not cause problems
either.
* build: disable LTC again so that we can bump PyTorch version
When built using PyTorch's master branch, the LTC code has been failing
to build for a few days. As a result, the PyTorch version referenced by
Torch-MLIR is stalled to the one from October 4th.
In an effort to advance to PyTorch version, this patch disables LTC, and
a subsequent patch will advance the PyTorch version.
* update PyTorch version to 1.14.0.dev20221010
Also disables the `UpSampleNearest2dDynamicFactor_basic` e2e test, since
the (PyTorch) oracle differs from the computed value for both the
refbackend and the eager_mode backends.
Instead of letting the auto-update script either fail because of script
errors or letting it commit bad versions, this patch makes the update
process manual, for now. Once the script stabilizes, I will its
re-enable periodic execution.
Updating the PyTorch version may break the Torch-MLIR build, as it did
recently, since the PyTorch update caused the shape library to change,
but the shape library was not updated in the commit for updating
PyTorch.
This patch introduces a new default-off environment variable to the
build_linux_packages.sh script called `TM_UPDATE_ODS_AND_SHAPE_LIB`
which instructs the script to run the update_torch_ods.sh and
update_shape_lib.sh scripts.
However, running these scripts requires an in-tree build and the tests
that run for an in-tree build of Torch-MLIR are more comprehensive than
those that run for an out-of-tree build, so this patch also swaps out
the out-of-tree build for an in-tree build.
Prior to this patch, the release process (`pip wheel`) retrieved
dependencies from the pyproject.toml file, which specified a version of
PyTorch that defaulted to the most recent nightly release. Instead, we
want the release process to use the same pinned PyTorch version as the
development build of PyTorch.
Since TOML files can't reference the pytorch-requirements.txt file, this
patch puts the dependencies from pyproject.toml into
whl-requirements.txt, which references pytorch-requirements.txt.
`git diff` does not work by default on untracked files. Since the
function `_check_file_not_changed_by` stores the new generated file in
an untracked file, `git diff` was not catching any modifications in
the new generated file. This commit adds the flag `--no-index` to make
`git diff` work with untracked files.
This patch fetches the most recent nightly (binary) build of PyTorch,
before pinning it in pytorch-requirements.txt, which is referenced in
the top-level requirements.txt file. This way, end users will continue
to be able to run `pip -r requirements.txt` without worrying whether
doing so will break their Torch-MLIR build.
This patch also fetches the git commit hash that corresponds to the
nightly release, and this hash is passed to the out-of-tree build so
that it can build PyTorch from source.
If we were to sort the torch versions as numbers (in the usual
descending order), then 1.9 appears before 1.13. To fix this problem,
we use the `--version-sort` flag (along with `--reverse` for specifying
a descending order). We also filter out lines that don't contain
version numbers by only considering lines that start with a digit.
As a matter of slight clarity, this patch renames the variable
`torch_from_src` to `torch_from_bin`, since that variable is initialized
to `TM_USE_PYTORCH_BINARY`.
Co-authored-by: powderluv <powderluv@users.noreply.github.com>
This adds a very long and obnoxious option to disable crashing tests.
The right fix here is to use the right multiprocessing techniques to
ensure that segfaulting tests can be XFAILed like normal tests, but we
currently don't know how to implement "catch a segfault" in Python
(patches or even just ideas welcome).
Motivated by #1361, where we ended up removing two tests from *all*
backends due to a failure in one backend, which is undesirable.
We added both ipc=host and explicit ulimits. This _may_ be causing slow downs on GHA. Remove the ulimit setting still passes all the CI tests locally. `--ipc=host` is still required.
The new logic has the following benefits:
1. It does not clobber the working tree state. We expect testing to not
change the work tree.
2. It correctly handles the case where a user has changes to the
generated files, but hasn't checked them in yet (this happens
frequently when adding new ops).
Gets both CI and Release builds integrated in one workflow.
Mount ccache and pip cache as required for fast iterative builds
Current Release docker builds still run with root perms, fix it
in the future to run as the same user.
There may be some corner cases left especially when switching
build types etc.
Docker build TEST plan:
tl;dr:
Build everythin: Releases (Python 3.8, 3.9, 3.10) and CIs.
TM_PACKAGES="torch-mlir out-of-tree in-tree"
2.57s user 2.49s system 0% cpu 30:33.11 total
Out of Tree + PyTorch binaries:
Fresh build (purged cache):
TM_PACKAGES="out-of-tree"
0.47s user 0.51s system 0% cpu 5:24.99 total
Incremental with ccache:
TM_PACKAGES="out-of-tree"
0.09s user 0.08s system 0% cpu 34.817 total
Out of Tree + PyTorch from source
Incremental
TM_PACKAGES="out-of-tree" TM_USE_PYTORCH_BINARY=OFF
1.58s user 1.81s system 2% cpu 1:59.61 total
In-Tree + PyTorch binaries:
Fresh build and tests: (purge ccache)
TM_PACKAGES="in-tree"
0.53s user 0.49s system 0% cpu 6:23.35 total
Fresh build/ but with prior ccache
TM_PACKAGES="in-tree"
0.45s user 0.66s system 0% cpu 3:57.47 total
Incremental in-tree with all tests and regression tests
TM_PACKAGES="in-tree"
0.16s user 0.09s system 0% cpu 2:18.52 total
In-Tree + PyTorch from source
Fresh build and tests: (purge ccache)
TM_PACKAGES="in-tree" TM_USE_PYTORCH_BINARY=OFF
2.03s user 2.28s system 0% cpu 11:11.86 total
Fresh build/ but with prior ccache
TM_PACKAGES="in-tree" TM_USE_PYTORCH_BINARY=OFF
1.58s user 1.88s system 1% cpu 4:53.15 total
Incremental in-tree with all tests and regression tests
TM_PACKAGES="in-tree" TM_USE_PYTORCH_BINARY=OFF
1.09s user 1.10s system 1% cpu 3:29.84 total
Incremental without tests
TM_PACKAGES="in-tree" TM_USE_PYTORCH_BINARY=OFF TM_SKIP_TESTS=ON
1.52s user 1.42s system 3% cpu 1:15.82 total
In-tree+out-of-tree + Pytorch Binaries
TM_PACKAGES="out-of-tree in-tree"
0.25s user 0.18s system 0% cpu 3:01.91 total
To clear all artifacts:
rm -rf build build_oot llvm-build libtorch docker_venv
externals/pytorch/build
On my local machine, `unzip` didn't exist (producing a "command not
found" error), but CMake ignored the error. Although the build did
succeed (because it found a previously-built version of libtorch), it
seems better to abort builds on such failures, so this patch checks the
return code of all external process invocations.
Along similar lines, this patch also updates the shell scripts in
`build_tools` to extensively use double-quoting to prevent unintentional
word splitting or globbing. Since some of the scripts execute `rm`
while using shell variables, this patch also adds the preamble `set -u`
to abort execution if an undefined variable is referenced, so that we
reduce the chances of executing `rm -rf /` if the path expression
happens to refer to an undefined variable.
* Add oneshot release snapshot for test/ondemand
Add some build scripts to test new release flow based on IREE.
Wont affect current builds, once this works well we can plumb it
in.
Build with manylinux docker
* Fixes a few issues found when debugging powderluv's setup.
* It is optional to link against Python3_LIBRARIES. Check that and don't do it if they don't exist for this config.
* Clean and auditwheel need to operate on sanitized package names. So "torch_mlir" vs "torch-mlir".
* Adds a pyproject.toml file that pins the build dependencies needed to detect both Torch and Python (the MLIR Python build was failing to detect because Numpy wasn't in the pip venv).
* Commented out auditwheel: These wheels are not PyPi compliant since they weak link to libtorch at runtime. However, they should be fine to deploy to users.
* Adds the --extra-index-url to the pip wheel command, allowing PyTorch to be found.
* Hack setup.py to remove the _mlir_libs dir before building. This keeps back-to-back versions from accumulating in the wheels for subsequent versions. IREE has a more principled way of doing this, but what I have here should work.
Co-authored-by: Stella Laurenzo <stellaraccident@gmail.com>