This commit also adds the Torch declaration for aten.max_unpool2d and
aten.max_unpool3d op. The TorchToLinalg lowering for the same will be
added in a follow-up commit.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
This commit fixes the bugs for the `onnx.OneHot` operator by:
1) Converting negative indices to non-negative indices
2) Handling both `int` and `float` types for `off` and `on` values
3) Using the correct result type
It also includes a new unit test.
This commit adds the OnnxToTorch support for ReduceSumSquare ops.
---------
Co-authored-by: Ubuntu <archana@archana-cpu.judsoscro3wupi0qm4bjlj5m3b.bx.internal.cloudapp.net>
This is probably a decent PR for learning about blocks and regions.
If you're here to learn about that, consider also looking at
lib/Conversion/TorchToSCF/TorchToSCF.cpp
While this doesn't include an e2e test, it is tested downstream in
https://github.com/nod-ai/SHARK-TestSuite/blob/main/e2eshark/onnx/operators/If/model.py
---------
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
This is part 1 of ~3, formatting all miscellaneous text files and CPP files matched by a first run of pre-commit. These tend to be low change-traffic and are likely not disruptive.
Subsequent patches will format Python files and remaining CPP files.
All e2e iree tests compiled, but they have the run issue of mismatch of
dtype like the following
```
expected:
1x1x2x2xsi32=[[[12 16][24 28]]]
actual:
1x1x2x2xi32=[[[12 16][24 28]]]
```
This commit also cleans up the OnnxToTorch lowering for the Squeeze and
Unsqueeze op and adds the support for handling edge cases.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
Previous implementation erroneously mixed up num_outputs with
slice_size. New version correctly computs the slice size and directly
performs slicing rather than leveraging `aten.split.tensor`. This is due
to `onnx` supporting a fixed number of splits making the size
computation more easily computeable when lowering to `aten` rather than
deferring to `aten.split.tensor`.
---------
Co-authored-by: Robert Suderman <rsuderman@Roberts-MacBook-Pro.local>
Align corner modes which select what the corners mean.
Either the center of the corner points or the edges of the edge points.
---------
Co-authored-by: Rob Suderman <rob.suderman@gmail.com>
1. onnx.MatMulInteger now converts to aten.matmul instead of aten.mm
2. aten.matmul, for ranks >=2, now allows quantized inputs and will
lower to linalg::quantized_matmul or linalg::quantized_batch_matmul.
3. added AtenMatmulOp to the FuseQuantizeOps rewrite patters
QuantizeOperands, QuantizeTransposedOperands, and QuantizeAccumulator
4. added several tests, including some to test AtenMmOp with varying
quantization signed-ness.
5. a quantized matmul mat-vec test is added to verify the failure to
lower to linalg; cleaned of out-of-date code related to common
torch-mlir lowering xfails.
6. in debugging a real model with quantized matmuls, I found a bug on
the scalarize-shapes pass which resulted from the aten.full op folder
returning an incompatible result type. This is fixed by the small change
here to
[lib/Dialect/Torch/IR/TorchOps.cpp](https://github.com/llvm/torch-mlir/compare/main...zjgarvey:torch-mlir:MatMulIntegerFix?expand=1#diff-dc8ed165c207918e606490eee3984b1ad51d7034e6aac36fc046bf47f6f03f4f).
This PR only performs a lit test. In lieu of an e2e test, https://github.com/nod-ai/SHARK-TestSuite/pull/142 makede sure that the lowering works & the numbers check out.
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
This commit also cleans up the OnnxToTorch lowering for the ReduceMean
op and adds the support for handling edge cases.
Signed-Off By: Vivek Khandelwal vivekkhandelwal1424@gmail.com