This is a first step towards the structure we discussed here:
https://gist.github.com/stellaraccident/931b068aaf7fa56f34069426740ebf20
There are two primary goals:
1. Separate the core project (C++ dialects and conversions) from the
hard PyTorch dependencies. We move all such things into projects/pt1 as
a starting point since they are presently entangled with PT1-era APIs.
Additional work can be done to disentangle components from that
(specifically LTC is identified as likely ultimately living in a
`projects/ltc`).
2. Create space for native PyTorch2 Dynamo-based infra to be upstreamed
without needing to co-exist with the original TorchScript path.
Very little changes in this path with respect to build layering or
options. These can be updated in a followup without commingling
directory structure changes.
This also takes steps toward a couple of other layering enhancements:
* Removes the llvm-external-projects/torch-mlir-dialects sub-project,
collapsing it into the main tree.
* Audits and fixes up the core C++ build to account for issues found
while moving things. This is just an opportunistic pass through but
roughly ~halves the number of build actions for the project from the
high 4000's to the low 2000's.
It deviates from the discussed plan by having a `projects/` tree instead
of `compat/`. As I was thinking about it, this will better accommodate
the follow-on code movement.
Once things are roughly in place and the CI passing, followups will
focus on more in-situ fixes and cleanups.
We just have to do this: I ran into an issue today where I needed to make a one line patch to stablehlo to work around a compiler issue, and it is completely unapparent how to do so given that the mlir-hlo repo is a read-only export and is at the tail end of a multi-week integration chain from the open-source stablehlo repo.
We've discussed this often enough and gotten +1 from everyone that they are ok with taking the e2e testing hit if it becomes necessary: It is necessary as the current situation is unmanageable.
Looking at it, I expect it wouldn't actually be very difficult to build a little runner binary out of the stablehlo interpreter and subprocess call that in order to get the testing coverage back. I leave that as an exercise to the users of this part of the stack and recommend following the breadcrumbs from the deleted python/torch_mlir_e2e_test/stablehlo_backends/linalg_on_tensors.py file and the main.py changes.
Note that I am pointing us at a stablehlo fork for the moment until it is apparent that we don't need to carry any local patches to it. We can update this in a few days if everything is clear.
* Support brevitas custom op (#2320)
* f16 change for brevitas
* Adapt the change of brevitas quant custom op name
* Add unit tests
* Make brevitas conversions isolated
* Address the comments
---------
Co-authored-by: dan <danimal197@gmail.com>
`TorchToTMTensor` depends on `TorchMLIRTorchUtils` for
`mlir::torch::torch_upstream::get_reduction_enum`.
`TorchMLIRTorchConversionPasses` depends on multiple libs for both tblgen'd
headers and definitions. Test with `ninja TorchMLIRTorchConversionPasses` from
a clean build.
This patch replaces all MHLO operations with their StableHLO
counterparts and adds a validation pass to ensure that no MHLO operations
remain before translating all Stablehlo operations to the MHLO dialect
for further lowering to the Linalg dialect.
This patch also updates all lit tests so that they refer to the
`convert-torch-to-stablehlo` pass and so that they check for StableHLO
operations.
Rename BlockAndValueMapping to IRMapping
Moved PrimTupleConstructOp type validation to its own verifier as the
tablegen version does not work for a combination of variadic input and
non-variadic output.
Summary of changes:
- Replace `llvm::None` with `std::nullopt`, since the former is deprecated
(https://reviews.llvm.org/D139763)
- Use setter for symbol visibility instead of passing string attribute when
creating FuncOp
This commit changes the `InsertRngGlobalsPass` to `TorchConversionToMLProgram`
pass. This commit also adds the `MLProgramBufferize` pass for the
bufferization of ml_program dialect ops to run on refbackend.
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
Summary of changes:
- Updated references to the Arith dialect
(https://reviews.llvm.org/D134762)
- Switched to prefixed accessors for MemRef dialect
(https://reviews.llvm.org/D134995)
- Fixed warnings about signed/unsigned comparisons, ignored return
values, and unused variables
* Fix c10::prim::Constant conversion; Added CAPI for passes; Added passes to base lazy backend
* Update ivalue_importer to use ImportOptions; Added tests for non-value/value tensor types
* Added tests for scalar Constant import; Updated MB::importFunction to use ImportOptions
* Test updates
* Move back module variable name
* Remove RefineTypes from TorchMlirLoweringContext::Build()
* Rename pass; Remove passes from base lazy backend
* Rename pass to VerifyBackendContractPass
* Aligned cmd pass name; Fixed TorchConversion passes registration
This introduces a new pass LowerToBackendContract (better name very
welcome) which performs the bulk of the simplifications that we do,
such as
- shape refinement
- dtype refinement
- maximizing value semantics
- inlining global slots
- decomposing complex ops
The key difference from before is that it iterates the set of
transformations, which can help to break a number of "catch-22" issues
where one simplification depends on another, the latest example being
here:
https://github.com/llvm/torch-mlir/issues/1131
This also exposed that RefineTypes was sometimes crashing/asserting for
certain inputs. This commit hardens it a bit.
Rather than a per-global-slot initializer region, we now have one for
the whole module. For example, it might look like this:
```
torch.global_slot "private" @tensor : !torch.tensor
torch.global_slot "private" @list : !torch.list<tensor>
torch.global_slot.module_initializer {
%0 = torch.tensor.literal(dense<0.0> : tensor<f32>) : !torch.tensor
%1 = torch.prim.ListConstruct %0 : (!torch.tensor) -> !torch.list<tensor>
torch.initialize.global_slots [
@tensor(%0 : !torch.tensor)
@list(%1 : !torch.list<tensor>)
]
}
```
This new structure allows GlobalizeObjectGraph to create the initializer in a
much simpler way, avoiding the need to reason about whether different slots
alias each other. Reasoning about whether slots alias each other now is the
responsibility of InlineGlobalSlots, which has to do a much more complicated
analysis, implemented using MLIR's dataflow analysis framework.
Recommended review order:
- Check out the new IR constructs in the .mlir files of various passes
- Op definitions (*.td)
- Changes to GlobalizeObjectGraph pass.
- InlineGlobalSlots pass (~total rewrite)
- Misc changes:
- Moving torchMlirAdjustStaticInformation for sharing with C++ code.
- EraseModuleInitializer pass
To make this a bit nicer, it would be good to have a `torch.module` op
with an initializer region attached. That would be more invasive though.
This change has highlighted certain aspects of our project layering
which are worth calling out. None of our backends can handle global
slots, so we enforce that there are no global slots before backend
lowering. At an earlier stage in the project, we had aspirations of
transparently handling mutable global state and such, but for reasons
described below, that is no longer a goal. So really global slots should
be seen as a progressive lowering step as part of inlining all the
IValue's in the original program (GlobalizeObjectGraph is also one such
step).
Over time, with insights from work like IREE-JAX, it has become clear
that there isn't a reliable programming model we can compile for users
where we just transparently handle mutable global state (and some other
things, like lists and dictionaries). There is a need for an "outer
program" that orchestrates more restricted subroutines of the kind we
can handle in our compile flow here. The benefit of that is that it
decouples considerations like shapes, dtypes, etc. from the program
constructs used in the outer program. As long as the outer program can
efficiently invoke (pipelining/async/etc.) high-performance
data-parallel numerical subroutines of the kind we compile in our flow
here, then there is a complete programming model. This is also
consistent with the direction of upstream PyTorch which is becoming more
tracing-based (which inherently loses a lot of program structure, which
then has to be applied back with an "outer program" orchestrating the
traced subroutines).
* [MHLO] Support for dynamic shape in basic op conversion by introducing CHLO dialect
Co-authored-by: Bairen Yi <yibairen.byron@bytedance.com>
Co-authored-by: Jiawei Wu <xremold@gmail.com>
Co-authored-by: Tianyou Guo <tianyou.gty@alibaba-inc.com>
Co-authored-by: Xu Yan <yancey.yx@alibaba-inc.com>
Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>
* [MHLO] Support I32 as shape tensor dtype
* [NFC] Add a 'TODO' annotation
An upstream MLIR bug (that was recently fixed) caused the result to be
ignored for Region- and Block-visitor functions. Now that the bug is
fixed, we don't need an auxiliary boolean to track whether the visitor
function has succeeded.
* [MLIR][TORCH] Add folder for torch_c.from_i64 & torch_c.to_i64
* add unit tests for each individual fold
* fix failure of NumelZeroRankModule & TestMultipleTensorAndPrimitiveTypesReturn
1. This commit adds lowering of "while-like" prim loop to scf.while
operation.
2. Adds lowering of "for-like" prim loops to scf.for operation.
Signed-Off-By: Prateek Gupta <prateek@nod-labs.com>
The updated LLVM code includes a patch to create bfloat16 array
attributes, thus enabling a different patch to torch-mlir to flesh out
support for the bfloat16 type.
See the documentation in `docs/shape_lib.md` and
`docs/adding_a_shape_function.md` for an overview of the system.
This completely overhauls how we represent shape functions. In
particular, RefineTypes does not infer shapes anymore (only dtypes).
Shape functions are now written in (TorchScript'able) Python.
Recommended review order:
1. Read `docs/shape_lib.md` and `docs/adding_a_shape_function.md`.
1. Code and tests for ReifyShapeCalculations, DropShapeCalculations.
1. Code and tests for SimplifyShapeCalculations.
1. shape_lib_gen.py
1. Code and tests for new RefineTypes pass.
1. Random folders/canonicalizers in TorchOps.cpp and associated test in
`canonicalize.mlir`.
1. New ReadOnly trait inferred from the registry.
1. Any miscellaneous remaining stuff.
Example `-print-ir-after-all` for ElementwiseUnaryModule:
[IR lowering dump](https://gist.github.com/silvasean/e4dc8cbc8d00aac7819602e3cbd8e212).
Example `-print-ir-after-all` for ElementwiseBinaryModule:
[IR lowering dump](https://gist.github.com/silvasean/daf6860ecced732af3568af6b1899113).
This pass is added to lower ops, which can not be lowered
via the TorchToLinalg pass, such as `torch.bincount` op.
This pass also uses torch-mlir's TMTensor Dialect to lower the
complex ops.
Also add torch.bincount op lowering with the help of TMTensor dialect
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This PR include the following pieces:
- Add torch `Generator` type. `Generator` type is converted to i64 in
refbackend type converter.
- Add seed managment support for the default global generator.
`torch_c.getNextSeed` op is used to get the seed. On refbackend, the
`torch_c.getNextSeed` is lowered to load/store from [0] of global
variable `default_generator` memref<i64> in `InsertRngGlobals` pass.
- Add `aten.uniform_` and testing as an example op for RNG ops. Add
`torch.pseudo.aten.uniform` op. It has the same operands and return as
the `aten.uniform_` from the op registry except for value semantics.