Commit Graph

41 Commits (d1f770c6206627348be71c48ebe593dac03b81b2)

Author SHA1 Message Date
penguin_wwy f34c187ac4
Normalize type hints to be compatible with multiple Python versions (#3028)
Although we provide a wheel package for Python 3.8, it may actually
throw the following exception:
`TypeError: 'type' object is not subscriptable`
2024-03-15 08:29:48 -07:00
penguin_wwy 29ac23a790
Setuptools uses a separate build directory (#3023)
* setuptools not steal the build directory name
https://github.com/llvm/torch-mlir/pull/3021#issuecomment-1994447855
* support pre-built LLVM
* support CMAKE_BUILD_TYPE env
2024-03-13 20:41:48 -07:00
Stella Laurenzo ed4df38e8d
[onnx] Add torch-mlir-import-onnx tool. (#2637)
Simple Python console script to import an ONNX protobuf to the torch
dialect for additional processing.

For installed wheels, this can be used with something like:

```
torch-mlir-import-onnx test/python/onnx_importer/LeakyReLU.onnx
```

Or from a dev setup:

```
python -m torch_mlir.tools.import_onnx ...
```
2023-12-12 22:01:30 -08:00
Stella Laurenzo 74f7a0c9d6
Upstream the ONNX importer. (#2636)
This is part 1 of 2, which will also include upstreaming the FX
importer. I started with ONNX because it forces some project layout
updates and is more self contained/easier as a first step.

Deviating somewhat from the RFCs on project layout, I made the following
decisions:

* Locating the `onnx_importer.py` into `torch_mlir.extras` as Maks
already has opened up that namespace and it seemed to fit. Better to
have fewer things at that level.
* Setup the build so that the root project only contains MLIR Python and
pure Python deps (like the importers), but this can be augmented with
the `projects/` adding more depending on which features are enabled.
* The default build continues to build everything whereas in
`TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS=1` mode, it builds a
`torch-mlir-core` wheel with the pure contents only.

`onnx_importer.py` and `importer_smoke_test.py` are almost verbatim
copies from SHARK-Turbine. I made some minor local alterations to adapt
to paths and generalize the way they interact with the outer project. I
expect I can copy these back to Turbine verbatim from here. I also
updated the license boilerplate (they have the same license but slightly
different project norms for the headers) but retained the correct
copyright.

Other updates:

* Added the ONNX importer unit test (which also can generate test data)
in lit, conditioned on the availability of the Python `onnx` package. In
a followup once I know everything is stable, I'll add another env var
that the CI can set to always enable this so we know conclusively if
tests pass.
* Moved the ONNX conversion readme to `docs/`.
* Renamed CMake option `TORCH_MLIR_ENABLE_ONLY_MLIR_PYTHON_BINDINGS` ->
`TORCH_MLIR_ENABLE_PYTORCH_EXTENSIONS` and inverted the sense. Made the
JitIR importer and LTC options `cmake_dependent_options` for robustness.
2023-12-12 19:02:51 -08:00
Stella Laurenzo 6961f0a247
Re-organize project structure to separate PyTorch dependencies from core project. (#2542)
This is a first step towards the structure we discussed here:
https://gist.github.com/stellaraccident/931b068aaf7fa56f34069426740ebf20

There are two primary goals:

1. Separate the core project (C++ dialects and conversions) from the
hard PyTorch dependencies. We move all such things into projects/pt1 as
a starting point since they are presently entangled with PT1-era APIs.
Additional work can be done to disentangle components from that
(specifically LTC is identified as likely ultimately living in a
`projects/ltc`).
2. Create space for native PyTorch2 Dynamo-based infra to be upstreamed
without needing to co-exist with the original TorchScript path.

Very little changes in this path with respect to build layering or
options. These can be updated in a followup without commingling
directory structure changes.

This also takes steps toward a couple of other layering enhancements:

* Removes the llvm-external-projects/torch-mlir-dialects sub-project,
collapsing it into the main tree.
* Audits and fixes up the core C++ build to account for issues found
while moving things. This is just an opportunistic pass through but
roughly ~halves the number of build actions for the project from the
high 4000's to the low 2000's.

It deviates from the discussed plan by having a `projects/` tree instead
of `compat/`. As I was thinking about it, this will better accommodate
the follow-on code movement.

Once things are roughly in place and the CI passing, followups will
focus on more in-situ fixes and cleanups.
2023-11-02 19:45:55 -07:00
Jack Wolfard 48f4e8f673
Add packaging as an install dependency (#2369)
Needed by `torch_mlir._version`. Resolves #2368.
2023-08-02 22:25:11 -07:00
Ashay Rane 28bb866260
CI: prepare CI for ccache updates for MSVC/Windows (#2120)
This patch, by itself, doesn't fix caching on Windows, but once a new
release of ccache is available, caching for Windows builds should start
working again (validated by building ccache from source and using it
with LLVM builds).

Ccache rejects caching when either the `/Zi` or `/ZI` flags are used
during compilation on Windows, since these flags tell the compiler to
embed debug information in a PDB file (separate from the object file
produced by the compiler).  In particular, our CI builds add the `/Zi`
flag, making ccache mark these compiler invocations as uncacheable.

But what caused our CI to add debug flags, especially when we specified
`-DCMAKE_BUILD_TYPE=Release`?  On Windows, unless we specify the
`--config Release` flag during the CMake build step, CMake assumes a
debug build.  So all this while, we had been producing debug builds of
torch-mlir for every PR!  No doubt it took so long to build the Windows
binaries.

The reason for having to specify the configuration during the _build_
step (as opposed to the _configure_ step) of CMake on Windows is that
CMake's Visual Studio generators will produce _both_ Release and Debug
profiles during the CMake configure step (thus requiring a build-time
value that tells CMake whether to build in Release or Debug mode).
Luckily, on Linux and macOS, the `--config` flag seems to be simply
ignored, instead of causing build errors.

Strangely, based on cursory tests, it seems like on Windows we need to
specify the Relase configuration as both `-DCMAKE_BUILD_TYPE=Release` as
well as `--config Release`.  Dropping either made my build switch to a
Debug configuration.

Additionally, there is a bug in ccache v4.8 (although this is addressed
in trunk) that causes ccache to reject caching if the compiler
invocation includes any flag that starts with `/Z`, including /`Zc`,
which is added by LLVM's HandleLLVMOptions.cmake and which isn't related
to debug info or PDB files.  The next release of ccache should include
the fix, which is to reject caching only for `/Zi` and `/ZI` flags and
not all flags that start with `/Z`.

As a side note, debugging this problem was possible because of ccache's
log file, which is enabled by: `ccache --set-config="log_file=log.txt"`.
2023-05-12 12:45:01 -05:00
Maksim Levental c718f87c5d
- rename no-jit -> core (#1920)
- add windows release
2023-03-07 00:20:06 -06:00
Maksim Levental 415265a64c
Add `torch-mlir-no-jit-importer` build case for mac os wheels (#1902)
* add flags to setup.py for out-of-tree build

* - fix build_ext bug
- add wheels script cases for mac wheels
2023-03-05 12:23:43 -06:00
Maksim Levental 2eddb3fde7
WIP: No PyTorch dep (#1854) 2023-02-13 14:21:06 -06:00
Ashay Rane 6e0b5b9ba7 build: match windows CI and Release build steps
After a recent LLVM tag update, the Windows Release build failed even
though pre- and post-merge Windows CI builds passed.  This patch makes
the Windows Release build use the same flags as the Window CI build to
try and address the Release build failures in the future.
2023-01-04 14:29:17 +05:30
Daniel Ellis 98d80a642a
Publish releases to PyPI after build 2022-12-07 10:01:55 -05:00
powderluv 3f883802e8
Relax the need for only CPU versions of PyTorch (#1505)
* Relax the need for only CPU versions of PyTorch

This allows installing corresponding PyTorch CUDA / ROCM versions and using torch-mlir.

* Remove obsolete comments
2022-10-24 13:46:31 -07:00
Jae Hoon (Antonio) Kim 3e08f5a779
Fix `fromIntArrayRef` call (#1479)
* Fix fromSymint call

* Update PyTorch requirement

* Re-enable LTC
2022-10-11 13:29:07 -04:00
Ashay Rane aefbf65e27
Disable LTC and update PyTorch (#1472)
* build: disable LTC again so that we can bump PyTorch version

When built using PyTorch's master branch, the LTC code has been failing
to build for a few days.  As a result, the PyTorch version referenced by
Torch-MLIR is stalled to the one from October 4th.

In an effort to advance to PyTorch version, this patch disables LTC, and
a subsequent patch will advance the PyTorch version.

* update PyTorch version to 1.14.0.dev20221010

Also disables the `UpSampleNearest2dDynamicFactor_basic` e2e test, since
the (PyTorch) oracle differs from the computed value for both the
refbackend and the eager_mode backends.
2022-10-10 23:05:40 -05:00
Jae Hoon (Antonio) Kim 3e27aa2be3
Fix as_strided/slice symint (#1401)
* Fix as_strided symint

* Re-enable LTC tests

* Re-enable LTC

* Add hardtanh shape inference function

* Fix slice symint
2022-09-26 12:16:49 -04:00
Sean Silva 566234f97a
Disable LTC again (#1400)
https://github.com/llvm/torch-mlir/issues/1396
2022-09-22 17:49:13 -05:00
Jae Hoon (Antonio) Kim 8967463980
Fix symint ops and blacklist `lift_fresh_copy` (#1373)
* Add symint to native functions yaml

* Re-enable LTC

* Fix new_empty_strided and narrow_copy
2022-09-20 10:16:04 -04:00
powderluv 45edef3391
Disable libzstd detection to fix M1 builds (#1380)
Previously we `sudo rm -f` the non-universal zstd installed in the GHA. The CI has this fix but it doesn't take effect in the Release builds without this change.
2022-09-18 16:50:16 -07:00
powderluv c0630da678
Disable LTC by default until upstream revert relands (#1303)
* Disable LTC by default until upstream revert relands

Tracked with the WIP https://github.com/llvm/torch-mlir/pull/1292

* Disable LTC e2e tests temporarily

* Update setup.py

Disable LTC in setup.py temporarily until upstream is fixed.
2022-08-28 19:11:40 -07:00
Henry Tu ba17a4d6c0
Reenable LTC in out-of-tree build (for real this time) (#1205)
* Fix OOT LTC CI build failure

* Disable LTC during macOS package gen

* Add more details about static TorchMLIRJITIRImporter library
2022-08-19 15:25:00 -04:00
Jae Hoon (Antonio) Kim 0af55781ae
Propagate device data names (#1157)
* Propagate device data names

* Address PR comment

* Add example usage

* Add test for device data names

* Make TorchMlirComputation fields protected

* Add lazy backend device data name unit tests

* Disable lazy backend tests if LTC is disabled

* Add comments
2022-08-16 09:30:22 -04:00
Ashay Rane 606f4d2c0e
build: streamline options for enabling LTC and MHLO (#1221) 2022-08-12 23:49:28 -07:00
Henry Tu 3e97a33c80
Revert "Reenable LTC in out-of-tree build (#1177)" (#1183)
This reverts commit f85ae9c685.
2022-08-08 18:58:35 -07:00
Henry Tu f85ae9c685
Reenable LTC in out-of-tree build (#1177) 2022-08-08 17:35:22 -04:00
Henry Tu e322f6a878
Update LTC CMake hack documentation (#1155)
* Update CMakeLists.txt

* Update CMakeLists.txt

* Update CMakeLists.txt

* Update CMakeLists.txt

* Update buildAndTest.yml

* Update setup.py

* Address review comments
2022-08-05 14:12:20 -04:00
powderluv 30017af5b5
Disable LTC on Release builds (#1125) 2022-07-31 20:58:29 -07:00
Ziheng Jiang c61c99e887
[MHLO] Init MHLO integration. (#1083)
Co-authored-by: Bairen Yi <yibairen.byron@bytedance.com>
Co-authored-by: Jiawei Wu <xremold@gmail.com>
Co-authored-by: Tianyou Guo <tianyou.gty@alibaba-inc.com>
Co-authored-by: Xu Yan <yancey.yx@alibaba-inc.com>
Co-authored-by: Ziheng Jiang <ziheng.jiang@bytedance.com>
2022-07-20 16:18:16 -07:00
powderluv cc3a4a58ef
Add oneshot release snapshot for test/ondemand (#768)
* Add oneshot release snapshot for test/ondemand

Add some build scripts to test new release flow based on IREE.
Wont affect current builds, once this works well we can plumb it
in.

Build with manylinux docker

* Fixes a few issues found when debugging powderluv's setup.

* It is optional to link against Python3_LIBRARIES. Check that and don't do it if they don't exist for this config.
* Clean and auditwheel need to operate on sanitized package names. So "torch_mlir" vs "torch-mlir".
* Adds a pyproject.toml file that pins the build dependencies needed to detect both Torch and Python (the MLIR Python build was failing to detect because Numpy wasn't in the pip venv).
* Commented out auditwheel: These wheels are not PyPi compliant since they weak link to libtorch at runtime. However, they should be fine to deploy to users.
* Adds the --extra-index-url to the pip wheel command, allowing PyTorch to be found.
* Hack setup.py to remove the _mlir_libs dir before building. This keeps back-to-back versions from accumulating in the wheels for subsequent versions. IREE has a more principled way of doing this, but what I have here should work.

Co-authored-by: Stella Laurenzo <stellaraccident@gmail.com>
2022-04-21 02:19:12 -07:00
Sean Silva b69db60f85 Pin the Python package to the exact PyTorch nightly.
This avoids issues where PyTorch version drift has made things
incompatible.

One caveat is that you will need to specify
`-f https://download.pytorch.org/whl/nightly/cpu/torch_nightly.html
--pre` on the command line for pip to know where to find the nightly
packages (there is no way around this) -- this is easiest to do by
simultaneously passing `-r requirements.txt` on the pip command line.
2022-04-20 16:47:38 -07:00
Sean Silva 8250f50c81 Attempt to set Python package version to the snapshot identifier.
This should make the releases sort properly when `pip`'s
`-f`/`--find-links` argument is used.
2022-03-30 17:54:11 +00:00
Sean Silva 3a96078571 Pin the CI to the latest working PyTorch.
I am investigating the breakage.

Also, fix "externals" rename in setup.py and some cases where we weren't
using `requirements.txt` consistently.

Also, fix a case where the packaging script would get confused due to
".." in the path name.
2022-03-29 15:02:17 -07:00
Jae Hoon (Antonio) Kim 7023ee53e8
Fix setup.py backwards compatibiity (#586)
* Fix setup.py backwards compatibiity

* Remove version check
2022-02-22 10:54:05 -05:00
Yi Zhang 869daf3c22 Add TMTensor dialect to torch-mlir
This is intended to explore support for non-structured ops that can't
be modeled by Linalg dialect. `tm_tensor.scan` and `tm_tensor.scatter`
are added as the first such ops. The dialect should aim to be
upstreamed in the future.
2022-02-15 16:45:38 -05:00
Stella Laurenzo a23d77100b Set some wheel building optimization options.
* Also adds a requirements.txt and updates docs to reference it versus stringy pip install.
* Adds doc with instructions on creating a wheel.

Fixes #370
2021-10-25 18:30:53 +00:00
Sean Silva 4a8d05e4a5 Add torch_mlir snapshot packages.
This closely follows IREE's
[schedule_snapshot_release.yml](f2f153d394/.github/workflows/schedule_snapshot_release.yml (L1))
workflow.

The snapshot releases can be installed with:
```
python -m pip install torch_mlir -f "https://github.com/llvm/torch-mlir/releases"
```
2021-10-06 14:50:31 -07:00
Sean Silva 712445eaa8 Bring back Python packaging.
Will add a CI job that builds and uploads snapshot packages next.
2021-10-05 13:33:30 -07:00
Sean Silva 3dc9b4ee2f Remove some more old stray files. 2021-09-22 16:13:03 -07:00
Stella Laurenzo 4148f88576 Merge npcomp and mlir python namespaces.
* Now the parts of the MLIR API are directly exported under the npcomp module (i.e. `npcomp.ir`, etc).
* Has required fixes for https://reviews.llvm.org/D108489
* Deletes npcomp.tracing vs fixing it because it was a very early experiment that will not be carried forward.
* This makes the npcomp python distribution completely standalone and separate from an mlir installation.
* Makes most of npcomp itself relocatable for future use as a library.
* Most things are a namespace package now. In the future we can s/torch_mlir/npcomp.frontends.torch/ and have it layer properly.
2021-08-22 21:00:42 -07:00
Stella Laurenzo 445472c51e Build packages for npcomp-torch.
* Adds a minimal setup.py for frontends/pytorch
* Makes npcomp-core export its headers and libraries
* Adds a script to build packages.
* Adds CI step to package and smoke test.
* Will need some more tweaks and coordination prior to deploying (version locking etc).
2021-07-29 19:58:59 -07:00
Stella Laurenzo 77e8ecaff8
Add basic setup.py file for the npcomp-core package. (#256) 2021-07-28 15:58:31 -07:00