Commit Graph

52 Commits (d3c6183294aef7c5185cdf659c9d56e3f52288e4)

Author SHA1 Message Date
Maksim Levental 8696752eb6
Expose metadata of torch-mlir types (plus verify DictType key and value types). (#1785) 2023-01-16 10:25:02 -06:00
Tanyo Kwok 577e38da58
build: update llvm tag to 7ccbb4df (#1736)
Summary of changes:

 - LLVM now includes <optional> instead of "llvm/ADT/Optional.h" in most
   (although not all) places
   (https://reviews.llvm.org/rG541ef3d61e9341cd38420c0dbca9250c4d0ea04c).
   This patch replaces the affected instances of `llvm::Optional` with
   `std::optional`.

 - In the usages of llvm::Optional that remain, llvm::Optional::value()
   is deprecated, so this patch replaces them with a dereference.
2022-12-20 18:17:27 +08:00
Ashay Rane f63bb9f86c
build: update llvm tag to 3a020527 (#1717)
Summary of changes:

 - Replace `llvm::None` with `std::nullopt`, since the former is deprecated
   (https://reviews.llvm.org/D139763)

 - Use setter for symbol visibility instead of passing string attribute when
   creating FuncOp
2022-12-14 02:06:39 -06:00
Gleb Kazantaev 708fa346a6
Fix Base Lazy Backend Type Conversion (#1412)
* Fix c10::prim::Constant conversion; Added CAPI for passes; Added passes to base lazy backend

* Update ivalue_importer to use ImportOptions; Added tests for non-value/value tensor types

* Added tests for scalar Constant import; Updated MB::importFunction to use ImportOptions

* Test updates

* Move back module variable name

* Remove RefineTypes from TorchMlirLoweringContext::Build()

* Rename pass; Remove passes from base lazy backend

* Rename pass to VerifyBackendContractPass

* Aligned cmd pass name; Fixed TorchConversion passes registration
2022-10-04 15:53:28 -07:00
Ashay Rane bb47c166a0
llvm: update tag to 061e0189 (#1180)
Summary of changes:
 - Switch to C++17 (similar to https://reviews.llvm.org/D131348)
 - Update MHLO to build with LLVM commit hash 061e0189
 - Replace deprecated `hasValue()` and `getValue()` with `has_value()`
   and `value()` respectively (https://reviews.llvm.org/D131349)
 - Use `TypedAttr` (https://reviews.llvm.org/D130092)
 - Use updated assembly format of `mhlo.compare` op (commit
   d03ef01e70fbf9afd0fa1976fbb7ed31838929b3 in MHLO repo)
2022-08-08 20:17:35 -07:00
Sean Silva 504de5e701 Rework how global slot initializers work.
Rather than a per-global-slot initializer region, we now have one for
the whole module. For example, it might look like this:

```
torch.global_slot "private" @tensor : !torch.tensor
torch.global_slot "private" @list : !torch.list<tensor>
torch.global_slot.module_initializer {
  %0 = torch.tensor.literal(dense<0.0> : tensor<f32>) : !torch.tensor
  %1 = torch.prim.ListConstruct %0 : (!torch.tensor) -> !torch.list<tensor>
  torch.initialize.global_slots [
    @tensor(%0 : !torch.tensor)
    @list(%1 : !torch.list<tensor>)
  ]
}
```

This new structure allows GlobalizeObjectGraph to create the initializer in a
much simpler way, avoiding the need to reason about whether different slots
alias each other. Reasoning about whether slots alias each other now is the
responsibility of InlineGlobalSlots, which has to do a much more complicated
analysis, implemented using MLIR's dataflow analysis framework.

Recommended review order:
- Check out the new IR constructs in the .mlir files of various passes
- Op definitions (*.td)
- Changes to GlobalizeObjectGraph pass.
- InlineGlobalSlots pass (~total rewrite)
- Misc changes:
  - Moving torchMlirAdjustStaticInformation for sharing with C++ code.
  - EraseModuleInitializer pass

To make this a bit nicer, it would be good to have a `torch.module` op
with an initializer region attached. That would be more invasive though.

This change has highlighted certain aspects of our project layering
which are worth calling out. None of our backends can handle global
slots, so we enforce that there are no global slots before backend
lowering. At an earlier stage in the project, we had aspirations of
transparently handling mutable global state and such, but for reasons
described below, that is no longer a goal. So really global slots should
be seen as a progressive lowering step as part of inlining all the
IValue's in the original program (GlobalizeObjectGraph is also one such
step).

Over time, with insights from work like IREE-JAX, it has become clear
that there isn't a reliable programming model we can compile for users
where we just transparently handle mutable global state (and some other
things, like lists and dictionaries). There is a need for an "outer
program" that orchestrates more restricted subroutines of the kind we
can handle in our compile flow here. The benefit of that is that it
decouples considerations like shapes, dtypes, etc. from the program
constructs used in the outer program. As long as the outer program can
efficiently invoke (pipelining/async/etc.) high-performance
data-parallel numerical subroutines of the kind we compile in our flow
here, then there is a complete programming model. This is also
consistent with the direction of upstream PyTorch which is becoming more
tracing-based (which inherently loses a lot of program structure, which
then has to be applied back with an "outer program" orchestrating the
traced subroutines).
2022-08-08 18:12:06 -07:00
Henry Tu 0c35e607b3 Add static shape for scalar tensors (#833)
* Assume zero rank tensors are scalar

* Run RefineTypes pass on JIT Graph

* Rollback assumption that zero rank tensors are scalar

* Set numSizes to -1 for non-ranked tensors

* Rename RefineTypes to RefineTupleTypes
2022-07-30 09:40:02 -04:00
Ashay Rane 72dd04cdb3
Revert "python: trim registration and loading of dialects and passes" (#1093)
This reverts commit ad283c1043, since it's
causing nightly build failures for all platforms.
2022-07-21 09:35:42 -07:00
Ashay Rane ad283c1043
python: trim registration and loading of dialects and passes (#1084)
In the interest of merging upstream LLVM quickly, a previous patch
(7f08169) updated the torch-mlir build to register all dialects and
passes through Python bindings.  This patch limits the dialects and
passes to only those that are used in torch-mlir.

Key to this change are the removal of
`MLIRPythonExtension.RegisterEverything` and the introduction of a new
Python module (`_mlir_libs/_site_initialize_0.py`), where we register
the dialects and passes used by torch-mlir.
2022-07-20 18:34:17 -07:00
Sean Silva 227dea7b2e Add support for ScalarType::QUInt8
I ran into this while poking around at
https://github.com/llvm/torch-mlir/issues/959
2022-06-29 15:33:28 -07:00
Sean Silva ab5ad7af09 Add tracing suport to `torch_mlir.compile`.
This also has a fix for the adjustment of types of TupleConstruct
inputs, which I found when using this new functionality on a model.

Some scenarios in tracing create situations where the output of
TupleConstruct has a more refined type than the inputs.

This introduces a helper `adjustStaticInformationForValues` which
subsumes the `derefineValues` helper and the tensor static information
adjustment we were doing.
2022-05-03 09:08:40 -07:00
Sean Silva 140babd952 Add minimal support for Union types.
A recent PyTorch commit made ConstantPad2d call a helper function with a
`Union[int, float]` type annotated. This commit adds minimal support for
representing and dealing with that.
https://github.com/pytorch/pytorch/pull/73287

Changes:
- Adding support for `!torch.union<T1, T2, T3>`/`Torch::UnionType`,
  along with the importer and CAPI code.
- Add support in isValidSubtype for union types.
- Adding a canonicalizer for `torch.derefine` to help simplify some code
  that derefines to a UnionType (this also fixes #664).

There is still more work to do for really supporting UnionType well,
such as canonicalizing UnionType's so that they can be compared with
pointer equality.
2022-03-29 17:45:48 -07:00
Yi Zhang 0cb216a1ad [Torch][Linalg] Add basic support for RNG
This PR include the following pieces:
- Add torch `Generator` type. `Generator` type is converted to i64 in
refbackend type converter.
- Add seed managment support for the default global generator.
`torch_c.getNextSeed` op is used to get the seed. On refbackend, the
`torch_c.getNextSeed` is lowered to load/store from [0] of global
variable `default_generator` memref<i64> in `InsertRngGlobals` pass.
- Add `aten.uniform_` and testing as an example op for RNG ops. Add
`torch.pseudo.aten.uniform` op. It has the same operands and return as
the `aten.uniform_` from the op registry except for value semantics.
2022-01-31 18:56:42 -05:00
stephenneuendorffer 614b889dc6
Enable python extensions when building out of tree (#363) 2021-10-27 17:04:12 -07:00
Stella Laurenzo 47209539a8 Bump llvm-project to f1b922188ead5ca492c8d8edd47921b013a22ae0.
Includes a fix to use `add_mlir_public_c_api_library` for Torch-MLIR's CAPI library, which is now required (note: upstream sample has it the right way).

Disabled a TOSA test per discussion: https://github.com/llvm/torch-mlir/issues/379
2021-10-25 13:22:07 -07:00
Sean Silva 5b6902e31c Dual license the torch-mlir project.
This commit (with approval from all contributors) dual licenses
the torch-mlir project under both the standard LLVM license and the
standard PyTorch license. This will facilitate moving code between
torch-mlir and the two upstream projects.

The standard file comment is now:

```
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
```

See `LICENSE` in the project root for the terms of both licenses.
2021-10-01 10:46:08 -07:00
Sean Silva 4fad753073 Move external/torch-mlir to the root of the repo. 2021-09-27 17:11:08 -07:00
Sean Silva d8f603a4e5 Remove old stuff in prep for move-to-root. 2021-09-27 17:11:08 -07:00
Sean Silva a99cbeeb7e Move TorchConversion dialect and TorchTo* into torch-mlir 2021-09-23 21:39:31 -07:00
Sean Silva a25163fbfa Remove old RefBackend
It is superceded by the new one.
2021-09-22 15:33:28 -07:00
Sean Silva b6be96d722 [torch-mlir earthmoving (2/N)] Python code movement.
This moves the bulk of the Python code (including the Torch interop)
from `frontends/pytorch` into `torch-mlir/TorchPlugin`. This also
required reconciling a bunch of other Python-related stuff, like the
`torch` dialects.

As I did this, it was simpler to just remove all the old numpy/basicpy
stuff because we were going to delete it anyway and it was faster than
debugging an intermediate state that would only last O(days) anyway.

torch-mlir has two top-level python packages (built into the
`python_packages` directory):

- `torch_mlir_dialects`: `torch` dialect Python bindings (does not
  depend on PyTorch). This also involves building the aggregate CAPI for
  `torch-mlir`.
- `torch_mlir`: bindings to the part of the code that links against
  PyTorch (or C++ code that transitively does).

Additionally, there remain two more Python packages in npcomp (but
outside `torch-mlir`):

- `npcomp_torch`: Contains the e2e test framework and testing configs
  that plug into RefBackend and IREE.
- `npcomp_core`: Contains the low-level interfaces to RefBackend and
  IREE that `npcomp_torch` uses, along with its own
  `MLIR_PYTHON_PACKAGE_PREFIX=npcomp.` aggregation of the core MLIR
  python bindings. (all other functionality has been stripped out)

After all the basicpy/numpy deletions, the `npcomp` C++ code is now very
tiny. It basically just contains RefBackend and the `TorchConversion`
dialect/passes (e.g. `TorchToLinalg.cpp`).

Correspondingly, there are now 4 main testing targets paralleling the
Python layering (which is reflective of the deeper underlying dependency
structure)

- `check-torch-mlir`: checks the `torch-mlir` pure MLIR C++ code.
- `check-torch-mlir-plugin`: checks the code in `TorchPlugin` (e.g.
  TorchScript import)
- `check-frontends-pytorch`: Checks the little code we have in
  `frontends/pytorch` -- mainly things related to the e2e framework
  itself.
- `check-npcomp`: Checks the pure MLIR C++ code inside npcomp.

There is a target `check-npcomp-all` that runs all of them.
The `torch-mlir/build_standalone.sh` script does a standalone build of
`torch-mlir`.

The e2e tests (`tools/torchscript_e2e_test.sh`) are working too.

The update_torch_ods script now lives in
`torch-mlir/build_tools/update_torch_ods.sh` and expects a standalone
build.

This change also required a fix upstream related to cross-shlib Python
dependencies, so we also update llvm-project to
8dca953dd39c0cd8c80decbeb38753f58a4de580 to get
https://reviews.llvm.org/D109776 (no other fixes were needed for the
integrate, thankfully).

This completes most of the large source code changes. Next will be
bringing the CI/packaging/examples back to life.
2021-09-15 13:40:30 -07:00
Sean Silva 28a7738189 [torch-mlir earthmoving (1/N)] C/C++ code movement.
This creates the `external/torch-mlir` directory as an
LLVM_EXTERNAL_PROJECTS-compatible project (analogous to
`iree-dialects`) and completes movement/rename of all pure MLIR C/C++
compiler code into there. The next step will be to move all the Python
code / code that links/includes PyTorch C++ code (which currently lives
in `frontends/pytorch`) into a subdirectory here.

I call this "earthmoving" because it is mostly mechanical changes and
renames. As a quick summary (we can change this down the road easily)
- C++ `mlir::NPCOMP::Torch -> mlir::torch::Torch`
- CAPI `npcompTorchListTypeGet -> torchMlirTorchListTypeGet`
- preprocessor `#ifndef NPCOMP_ -> #ifndef TORCHMLIR_`
- CMake `NPCOMPFoo -> TorchMLIRFoo`

The goal of this is to create a standalone project creating a center of
mass for entry into the MLIR ecosystem from PyTorch, suitable in scope
for eventual inclusion/ownership in PyTorch. The idea is that
`external/torch-mlir` will some day be pulled out into its own
repository, and then npcomp will simply pull it in as a submodule.

Layering-wise, what lives in `torch-mlir` lowers code from PyTorch
(currently TorchScript, but TorchFX or pytorch/xla-style tracing are
possible extensions) down to what we have been calling the "Torch
backend contract" which is cleaned up IR (inlining, simplifcation,
conversion to value tensors, ...) entirely in the `torch` dialect. This
is the branching off point for further lowering, of which npcomp takes
one opinion (outside `torch-mlir` of course!), namely the
`TorchConversion` dialect/transforms which lower to IR suitable for IREE
and other linalg-on-tensors based lower-level compilers.

Summary of changes:
- move `{include,lib,test}/Dialect/Torch` into `torch-mlir`
- move relevant parts of CAPI into `torch-mlir`.
- leave a few things related to the `torch-mlir` Python build commented
  out, which should be resolved in a subsequent change.
2021-09-10 21:44:37 -07:00
Yi Zhang bfc3ee35c6 Import Machine Translation model to MLIR.
This includes the following changes to import MT model into MLIR. There
are still a lot of work to for actual compilation.
- Add `torch.dict<>`, `torch.any`, `torch.number` types
- Add `torch.prim.DictConstruct` op
- Fix `torch.prim.TupleConstruct` op assembly format to include resulting types
2021-08-10 15:22:06 -04:00
Stella Laurenzo 2dbab50444
Rework the python build to a static assembly of MLIR+NPCOMP (#251)
* Adapt to python build system updates.

* Bump llvm to 310c9496d80961188e8d8f8ad306cdf44bd7541f (includes python build updates)
* Adds refback C-API.
* Re-layers all python builds.
* Rework CI.
2021-07-27 16:10:10 -07:00
Sean Silva 4a0eb44d17 Add a !torch.float type.
This removes the dependence of the `torch` dialect on the low-level
builtin types.
Now the `torch` dialect is a standalone layer, suitable for targeting
from higher-level Python abstractions without any premature lowering to
primitive types.
2021-06-17 09:24:18 -07:00
Sean Silva f49ebf1690 Add `!torch.int` type.
This replaces the ad-hoc use of `i64` throughout the Torch layer, and
helps to keep it crystal clear the distinction between `!torch.int`
(which is modeling the Python `int` type) and the various types that
serve as dtypes of tensors, which are a totally different type universe.

Changes:
- `!torch.int` type and C bindings.
- Change `torch.constant.int` parser to not need the `: i64` at the end.
- `m_TorchConstantInt` matcher to aid with matching constants.
- BackendTypeConversion changes for `!torch.int` -> `i64` type
  conversion.
- Refactor finalizing patterns in FinalizingBackendTypeConversionPass
  (they were getting very repetitive).
- Mechanical rewriting of `!torch.int` to `i64` in all the tests, and
  `AnyTorchIntType` to `Torch_IntType` in the `.td` files.
2021-06-17 07:28:23 -07:00
Sean Silva 784156a998 Add `!torch.bool` type.
This finishes removing the dependence on the basicpy dialect!

Changes:
- Add `!torch.bool` type and replace use of `!basicpy.BoolType` in
  Torch-related code.
- Rename BuiltinTensorize to BackendTypeConversion since now it handles
  bool conversions (and, when we add !torch.int and !torch.float, it
  will handle those as well), and generalize the related utilities (I
  also moved them to Torch/Transforms since they aren't really part of
  Torch/IR).
  - Add `torch.to_i1` and `torch.from_i1` ops for materializations
- [cleanup] Reorganize `torch.constant.*` ops in TorchOps.td
- Remove dependency of `torch` dialect on `basicpy` dialect and also
  `std` dialect. For `std`, we use some call related ops, but the
  `torch` dialect itself never produces them (we have passes that do
  though).

This is fairly mechanical. Recommended review order:
- New stuff in Torch/IR
- New BuiltinTypeConversion files.
- Mechnical fixups elsewhere.
2021-06-16 13:22:00 -07:00
Sean Silva 2e850ecb72 Add !torch.str type.
- Remove dependence on `!basicpy.BytesType`.
- Add `torch.constant.str "s"` analogous to `torch.constant.none`.
2021-06-15 10:10:59 -07:00
Sean Silva 92ee0fa98f Add `!torch.tuple<T1, T2>` type.
This further eliminates the need for the `basicpy` dependency.

This required adding `torch.prim.TupleConstruct` to replace
`basicpy.build_tuple`.
2021-06-15 08:15:22 -07:00
Sean Silva ea1dd1cd90 Remove a few more comments I missed in the last commit. 2021-06-14 18:18:43 -07:00
Sean Silva 6b2424512b Make C API files more consistent
- Make consistent with MLIR Core
  - Use `//` or `///` comments.
  - Use `bool` type for booleans
  - No duplicated comments in .cpp files
- Split types into separate files `{Basicpy,Numpy,Torch}Types.h`
- Add dialect prefix consistently to C API symbols. We have lots of
  similarly named types (e.g. "list" type in basicpy and torch).
2021-06-14 15:34:43 -07:00
Sean Silva db282fd1b4 Introduce native `!torch.none` type.
- Add `torch.constant.none` op to construct it (naming is chosen to be
  analogous to Torch's representation of a prim::Constant with
  NoneType, rather than using the "singleton" terminology of Basicpy).
2021-06-14 13:30:58 -07:00
Yi Zhang e0ff5248fb Add TorchList type and prim::ListConstruct #218 2021-06-10 14:31:35 -07:00
Sean Silva 370e3270ab Introduce `!torch.tensor` / `!torch.vtensor` types.
This removes our reliance on the numpy dialect and avoids our off-label
use of the builtin tnesor type for modeling unknown dtypes.  The
`!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor.
The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic
tensor. The new types look as follows syntactically:

```
// Least-static-information, non-value-semantic tensor.
!torch.tensor
// Explicit form of least-static-information variant.
!torch.tensor<*,unk>
// Least-static-information, value-semantic tensor.
!torch.vtensor
// Explicit form of least-static-information variant.
!torch.vtensor<*,unk>
// Fixed-set of allowable element types, with first-class support for
// Torch's frontend signedness semantics.
!torch.tensor<*,si32>
// First-class support for unknown dtypes.
!torch.tensor<[?,?,?],unk>
// Standard MLIR representation of `?` for unknown dimensions.
!torch.tensor<[?,2,?,4],unk>
// Statically shaped / dtyped example.
!torch.vtensor<[1,2,3,4],f32>
```

This required fairly significant changes throughout the compiler, but
overall it is a big cleanup. We now have a much clearer layering of "the
Torch frontend lowering" vs "lowering to std + linalg + etc.".

At the C++ level, there is `ValueTensorType`, `NonValueTensorType`.
We also have a helper `BaseTensorType` (kind of like ShapedType) which
interoperates with those two.

Included changes:
- New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for
  creating torch tensor literals in the frontend.
- Consistently use signedness for the types (except i1 which I didn't
  touch -- we need to sort out the situation with !basicpy.BoolType
  there anyway so will be attending to that soon)
- Frontend can annotate whether an argument to the function has value
  semantics. We currently require this, as our backend contract does not
  currently allow us to even model the non-value-semantic case. Before,
  the value-semantic assumption was randomly injected in the middle of
  the pass pipeline.
- Move ArrayToTensor (now called MaximizeValueSemantics) and
  RefinePublicReturn passes to torch dialect.
- The TorchToStd and TorchToLinalg passes are now type conversions from
  `!torch.vtensor` to `tensor` and use the dialect conversion infra.
  The overall conversion pipeline is set up following the best practices
  of the "Type Conversions the Not-So-Hard Way" talk. This required
  introducing `torch-func-builtin-tensorize` and
  `torch-finalizing-builtin-tensorize` passes analogous to the upstream
  bufferization passes with the corresponding names (mostly just
  copypasta from there).
- Misc Torch-level canonicalizations -- we now cleanly layer the
  lowering to std later in the pipeline, so we are gradually lessening
  our reliance on random std constant folding before we get to that
  point.

Recommended review order:
- New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp
- New ops in TorchOps.td / TorchOps.cpp
- Less important / more mechanical stuff
  - Frontend changes.
  - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-06-10 10:56:48 -07:00
Sean Silva d66e8fe1f8 Get simple quantized model importing.
This is enough to import the program and get it through the compilation
pipeline. It of course fails at the VerifyBackendContract pass since
there is a lot missing, but the final IR for a simple quantized MLP is
looking pretty decent already:
[IR](https://gist.github.com/silvasean/f76bccd76e9b193d396cfb2f9a11f54d)

Main changes:
- Add support for importing torch quantized tensors, including
  `torch.per_tensor_affine.create` op and `!torch.qint8` element type.
- Add support for importing `LinearPackedParamsBase` (basically a weight
  + optional bias, but requires `torch.linear_params.create` op +
  `!torch.LinearParams` type to model it). This was less painful than I
  expected, as it has the necessary methods to opaquely unpack itself. I
  factored things so it should be easy to extend to other custom classes
  like `ConvPackedParamsBase`.
- Add minimal boilerplate for importing `quantized::*` ops, with
  `quantized::linear` being a motivating example.
- Add e2e test with simple quantized MLP (courtesy of @phoenix-meadowlark).

This is somewhat of an abuse of `!numpy.ndarray` / `tensor`, as
really the proper semantics of `!torch.qint8` dtype on a Torch tensor is
"check the quantizer object of the tensor for side data (scale/offset,
possibly per-channel) that defines the full semantics of the tensor". We
don't have any such notion of "side data" for `!numpy.ndarray` /
`tensor`, let alone anything that would have the associated behavior of
keying off the dtype to determine if the side data is present.
This will be fixed by a proper `!torch.tensor` type.
2021-05-20 11:28:20 -07:00
Sean Silva c4123d4d4d Add npcomp-verify-backend-contract pass.
This pass verifies that a given module satisfies the contract that we
have for backends. This is phrased as an "allowlist", because we want to
keep this interface tight. Also, this gives much better diagnostics than
a backend randomly crashing or failing to compile would (though they
could still be improved).

This was especially painful because if we had
`tensor<?x!numpy.any_dtype>` slip through, at some point RefBackend
would convert it to a memref type and trip the "verify type invariants"
assertion which gives no location or anything and crashed the process,
which was very unpleasant.

We implement this with the dialect conversion framework, which works
reasonably well and was quick to put together and familiar, but is still
very "op oriented". We probably want to make this hand-rolled
eventually, especially the error reporting (the most useful kind of
error for a dialect conversion user is not necessarily the best for this
use case). Also, in production, these error will go to users, and need
to be surfaced carefully such as "the compiler needs a type annotation
on this function parameter" which in general requires some special
analysis, wordsmithing, and overall awareness of the e2e use case (such
as how much we can lean into certain source locations) to provide a
meaningful user-level diagnostic.

Also, add `inline` to the current frontend lowering pass pipeline to
allow slightly more complicated programs that otherwise would fail on
shape inference.
2021-04-20 12:00:35 -07:00
Sean Silva 28a0f02746 Add support for compiling through IREE.
Recommended review order:
- Changes in frontends/pytorch/examples/
- Changes in python/npcomp/compiler/pytorch/backend/
- Boilerplate for the `npcomp-iree-backend-lower-linkage` pass.

This change separates out a
`npcomp.compiler.pytorch.backend.frontend_lowering` module that does the
common lowering for all backends. The individual compiler backends
`npcomp.compiler.pytorch.backend.{refjit,iree}` now accept a loosely
defined "TCP + scalar code" IR mix that will be formalized in the
future as the interface to codegen backends.

This also required adding a small pass
`npcomp-iree-backend-lower-linkage` which adds `iree.module.export` onto
functions, and layering that into the frontend flow. The pass doesn't
require a C++-level dependency on IREE, which is nice for now. TBD how
we are going to handle lists (we hope we can get away with sneakerneting
some td files and relying on loose IR compatibility).

Running through IREE requires the ability to import `iree.compiler` and
`iree.runtime`, which can be obtained as follows:
```
python3 -m pip install iree-compiler-snapshot iree-runtime-snapshot -f https://github.com/google/iree/releases/tag/snapshot-20210406.200
PYTHONPATH="${PYTHONPATH}:${MY_IREE_BUILD}/bindings/python/"
```

This patch makes it painfully clear that we don't have any e2e testing
harness to really plug into, and also don't have a usable Python API to
our compiler stack (something usable in a jupyter notebook).
That will be addressed in subsequent commits. We've been flying by the
seat of our pants with this `examples` directory that isn't subject to
any kind of testing or real usability concerns.
2021-04-09 13:15:07 -07:00
Sean Silva 7a4043b7c4 Add ability to compile from object graph ir. 2021-03-31 09:25:13 -07:00
Sean Silva 2750d2084c Add prim::device and handle derefining for prim::CallMethod 2021-03-11 14:10:09 -08:00
Bairen Yi 53b01cb9ba Bump llvm-project to e31c77b1827fa4dd3511f21af11cfab18ecf6d38
Signed-off-by: Bairen Yi <yibairen.byron@bytedance.com>
2021-03-10 11:01:16 -08:00
Sean Silva c424c24ed8 Bump llvm-project to c68d2895a1f4019b387c69d1e5eec31b0eb5e7b0
- dialect registration
- StringAttr::get: order of context arg
- math dialect
- LogicalResult nodiscard
- error message for invalid broadcast
2021-02-22 12:23:24 -08:00
Sean Silva 158c5c484d Implement GlobalizeObjectGraph transformation.
This required restructuring of how we model TorchScript on import. The
main difference is that now we split out a `torch.class_type` that holds
methods and declarations of the types of each slot. This is more
consistent with TorchScript (our previous representation was
"denormalized").

Recommended reading order:
1. check out the description of `torch.class_type` in `TorchOps.td` and
   look at `test/Dialect/Torch/ops.mlir` and
   `frontends/pytorch/test/module_import/` to familiarize with the new
   representation.
   - Just look at the new IR. The diff between the old names and new
     names is confusing.
2. check out `test/Dialect/Torch/globalize-object-graph*.mlir`
   and read along with the pass description in
   `include/npcomp/Dialect/Torch/Transforms/Passes.td`
3. Read the code in `GlobalizeObjectGraph.cpp` and miscellaneous changes
   in `ivalue_importer.cpp`, `TorchOps.cpp`, etc.
2021-02-18 18:18:47 -08:00
Sean Silva 7f7bf39551 Add prim::Print and fix prim::CallMethod
For now, we are treating strings as bytes.
2021-02-10 15:15:56 -08:00
Sean Silva 689b40c7a6 Add initial TorchScript module importer
It turns out that this was easiest to structure as a general IValue
importer, since torch module are just one of the possible IValue's.

We import the IValue object graph in a braindead fashion into basicpy
ops and a new `torch.nn_module` op that is used to model the
attributes/methods of a torch::jit::Module IValue. See `Torch/ops.mlir`
for an example, and also check out the .py import tests in
`frontends/pytorch/test/module_import`.

As part of this change, a few housekeeping tasks:
- extract some helpers from graph_importer.cpp
- more helpers around the C API
- misc touchups
2021-01-28 11:55:17 -08:00
Stella Laurenzo 3f706473fd NFC: Delete npcomp python API and switch to upstream.
* Most updates are mechanical except:
  * python/npcomp/__init__.py and python/NpcompModule.cpp: New init/registration bits to replace some automatic things being done in the old bindings. Also an annoying linkage hack that I'll need to triage next.
  * NpcompModule.cpp: New python helpers for custom types and other hard to reach items (for the new bindings).
  * PybindUtils.h: Extended type casting so that the local extension can directly exchange Mlir* C types.
  * python/npcomp/dialects/*: Build support and ODS bindings for local dialects.
  * mlir_utils.py: Defines an ImportContext to replace the old/bad "Helper" class that tracked locations, and insertion points. This has a number of methods on it that would be good candidates to think about better ways to do them upstream.
* Also hoisted a few stand-alone samples to dedicated unit tests as they covered important things.
* More cleanup can be done, but keeping this patch as mechanical as possible to stay in NFC land (this is big enough).
2021-01-08 10:46:24 -08:00
Sean Silva b2077738ca Bump llvm-project to 444822d77a7fea28aa49edf24533c987efa1b2ee
Fixes:
- renames StandardTypes -> BuiltinTypes
- std.extract_element -> tensor.extract
2020-12-11 14:43:38 -08:00
Stella Laurenzo 78a3c90758 Add TorchScript graph importer.
* Does not handle all features yet but should conservatively fail on unsupported things.
* Location tracking is still somewhat mismatched between what TorchScript and MLIR do. Likely need a better heuristic for tracking locations from defs for nodes that do not carry location.
* Sets the ground-work for a specialized/generic split but only implements the generic side.
* Had some evidence that this requires a recent bump of PT nightly (within the last month) to pick up pybind11 2.6, which includes some cross-module symbol fixes (vs the previously sync'd version). No source changes, but older versions fail to cast function types at runtime.
2020-11-23 14:20:09 -08:00
Stella Laurenzo 029815152e Add remaining pieces to capture full example models.
* Adds Basicpy List, Tuple, Dict types and plumbs through C API.
* Started debugging the issues around aten::conv2d capture, but a PyTorch bug is suspected.
* Was able to manually verify that the basic conv2d forward test captures correctly with a workaround.
* Need to resolve some printing issues upstream and move these tests to an integration test target (they take ~seconds to run).
2020-10-19 22:16:59 -07:00
Stella Laurenzo 9e52f6235b More progress on PyTorch acap device capture.
* Now gets far enough to capture batch_norm.
* Has some issues still with in-place ops.
* Can materialize constants.
* Includes an upgrade to PyTorch nightly, which has important bug fixes for fallback and boxed kernel dispatch.
* Fixes #78, #79, #80.
* Will do more testing in a follow-up once further bugs are fixed that facilitate getting at the other features.
2020-10-15 21:43:21 -07:00
Stella Laurenzo af4edb63ae Start reworking towards a shared library build.
* Need to have a dag of shared library deps in order to interop across python extensions (as presented in ODM).
* Introduced add_npcomp_library and friends to mirror the MLIR setup.
* Adds a libNPCOMP.so shared library.
* Redirects tools and extensions to link against libNPCOMP.so (instead of static libs).
* Moves all libraries to lib/, all binaries to bin/ and all python extensions to python/. The invariant is that the rpaths are setup to have a one level directory structure.
* Reworks the _torch_mlir extension to build like the others (still need to come up with a consolidated rule to do this instead of open coded).
* Includes an upstream version bump to pick up needed changes.

Sizes with dynamic linking (stripped, release, asserts enabled):
  libNPCOMP.so: 43M (includes much of the underlying LLVM codegen deps)
  libMLIR.so: 31M
  _npcomp.so: 1.6M (python extension)
  _torch_mlir.so: 670K (python extension)
  npcomp-capi-ir-test: 6.3K
  npcomp-opt: 351K
  npcomp-run-mlir: 461K
  mnist-playground: 530K

Still more can be done to normalize and optimize but this gets us structurally to the starting point.
2020-10-09 16:02:58 -07:00