Commit Graph

25 Commits (d46f169c1a8443caa62b23b331779399f0d0c563)

Author SHA1 Message Date
Sean Silva a5fe0cf063 Introduce new shape library design.
See the documentation in `docs/shape_lib.md` and
`docs/adding_a_shape_function.md` for an overview of the system.

This completely overhauls how we represent shape functions. In
particular, RefineTypes does not infer shapes anymore (only dtypes).
Shape functions are now written in (TorchScript'able) Python.

Recommended review order:

1. Read `docs/shape_lib.md` and `docs/adding_a_shape_function.md`.
1. Code and tests for ReifyShapeCalculations, DropShapeCalculations.
1. Code and tests for SimplifyShapeCalculations.
1. shape_lib_gen.py
1. Code and tests for new RefineTypes pass.
1. Random folders/canonicalizers in TorchOps.cpp and associated test in
   `canonicalize.mlir`.
1. New ReadOnly trait inferred from the registry.
1. Any miscellaneous remaining stuff.

Example `-print-ir-after-all` for ElementwiseUnaryModule:
[IR lowering dump](https://gist.github.com/silvasean/e4dc8cbc8d00aac7819602e3cbd8e212).

Example `-print-ir-after-all` for ElementwiseBinaryModule:
[IR lowering dump](https://gist.github.com/silvasean/daf6860ecced732af3568af6b1899113).
2022-03-15 12:41:58 -07:00
Yi Zhang 0fe70994e5 Add support for multiple return values
This change is to unblock the work of some backprop ops returning more
than one tensors. We will need to think of a more scalable approach
in the future if more flexible return types combinations are needed.
2021-11-16 21:07:45 -05:00
Yi Zhang a459e09ab7 E2e support for aten.softmax.int and aten.embedding
- Added a DecomposeComplexOps pass to decompose complex torchOps.
- Refactored `visitAtenArgmaxOp` and `visitAtenAnyDimOp` to
`visitReductionAlongDimIntOp`.
- Moved some helper functions into
torch-mlir/Dialect/Torch/Utils/Utils.h to be shared by multiple files.
- Added support for f64 tensor as argument and return types.
2021-10-18 17:57:45 -04:00
Sean Silva 0c5c84d63d Add a basic TOSA E2E backend.
We lower through linalg-on-tensors and use RefBackend to run it.
This adds enough support for a "tanh" op. Adding more ops should be
fairly mechanical now that things are wired up. Run with:
```
./tools/torchscript_e2e_test.sh -c tosa
```

The backend structure is very similar to linalg-on-tensors based E2E
backends and is a nice parallel (see `tosa_backend.py`). Actually, this
forced a nice refactoring to the layering here. We removed
`torchscript-module-to-linalg-on-tensors-backend-pipeline` and instead
require separately running
```
torchscript-function-to-torch-backend-pipeline,torch-backend-to-linalg-on-tensors-backend-pipeline
```
This highlights the step that lowers to the "torch backend contract"
of cleaned up `torch` dialect ops is a critical step in the lowering.
Going forward, that is the key load-bearing contract of the torch-mlir
project, not the linalg-on-tensors backend contract.

Recommended review order:
- `TorchToTosa.cpp` / `TorchToTosa/basic.mlir`
- `python/torch_mlir_e2e_test/torchscript/configs/tosa_backend.py` and
  the new `utils.py` file there.
- `python/torch_mlir_e2e_test/tosa_backends/linalg_on_tensors.py` and
  `abc.py` in that directory for the TOSA backend e2e interface.
- other misc mechanical changes
2021-10-08 09:59:45 -07:00
Sean Silva 5b6902e31c Dual license the torch-mlir project.
This commit (with approval from all contributors) dual licenses
the torch-mlir project under both the standard LLVM license and the
standard PyTorch license. This will facilitate moving code between
torch-mlir and the two upstream projects.

The standard file comment is now:

```
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
```

See `LICENSE` in the project root for the terms of both licenses.
2021-10-01 10:46:08 -07:00
Ramiro Leal-Cavazos b59f2cb673
Implement the lazytensor package (#331)
Implement the `lazytensor` python package for converting
lazy computations captured by the Lazy Tensor Core into MLIR.
This PR also fixes a few things with `torchfx` and its example
2021-09-28 17:25:06 -07:00
Sean Silva 4fad753073 Move external/torch-mlir to the root of the repo. 2021-09-27 17:11:08 -07:00
Sean Silva 28a7738189 [torch-mlir earthmoving (1/N)] C/C++ code movement.
This creates the `external/torch-mlir` directory as an
LLVM_EXTERNAL_PROJECTS-compatible project (analogous to
`iree-dialects`) and completes movement/rename of all pure MLIR C/C++
compiler code into there. The next step will be to move all the Python
code / code that links/includes PyTorch C++ code (which currently lives
in `frontends/pytorch`) into a subdirectory here.

I call this "earthmoving" because it is mostly mechanical changes and
renames. As a quick summary (we can change this down the road easily)
- C++ `mlir::NPCOMP::Torch -> mlir::torch::Torch`
- CAPI `npcompTorchListTypeGet -> torchMlirTorchListTypeGet`
- preprocessor `#ifndef NPCOMP_ -> #ifndef TORCHMLIR_`
- CMake `NPCOMPFoo -> TorchMLIRFoo`

The goal of this is to create a standalone project creating a center of
mass for entry into the MLIR ecosystem from PyTorch, suitable in scope
for eventual inclusion/ownership in PyTorch. The idea is that
`external/torch-mlir` will some day be pulled out into its own
repository, and then npcomp will simply pull it in as a submodule.

Layering-wise, what lives in `torch-mlir` lowers code from PyTorch
(currently TorchScript, but TorchFX or pytorch/xla-style tracing are
possible extensions) down to what we have been calling the "Torch
backend contract" which is cleaned up IR (inlining, simplifcation,
conversion to value tensors, ...) entirely in the `torch` dialect. This
is the branching off point for further lowering, of which npcomp takes
one opinion (outside `torch-mlir` of course!), namely the
`TorchConversion` dialect/transforms which lower to IR suitable for IREE
and other linalg-on-tensors based lower-level compilers.

Summary of changes:
- move `{include,lib,test}/Dialect/Torch` into `torch-mlir`
- move relevant parts of CAPI into `torch-mlir`.
- leave a few things related to the `torch-mlir` Python build commented
  out, which should be resolved in a subsequent change.
2021-09-10 21:44:37 -07:00
Sean Silva cab8d922ec Add TorchToIREE and factor out TorchConversion dialect.
This converts a basic list op (torch.prim.ListConstruct) to the IREE
dialect.

```
    def forward(self, x: float):
            return [x, x]
```

turns into:

```
builtin.func @forward(%arg0: !torch.float) -> !torch.list<!torch.float> {
  %0 = torch.prim.ListConstruct %arg0, %arg0 : (!torch.float, !torch.float) -> !torch.list<!torch.float>
  return %0 : !torch.list<!torch.float>
}
```

which turns into:

```
builtin.func @forward(%arg0: f64) -> !iree.list<f64> {
  %c1 = constant 1 : index
  %c0 = constant 0 : index
  %c2 = constant 2 : index
  %0 = iree.list.create %c2 : !iree.list<f64>
  iree.list.set %0[%c0], %arg0 : !iree.list<f64>, f64
  iree.list.set %0[%c1], %arg0 : !iree.list<f64>, f64
  return %0 : !iree.list<f64>
}
```

As part of doing this, I realized that it was time to formalize the IR
form that we reach right before running TorchTo{Linalg,Std,...}. We now
call it the "Torch backend contract". We then lower the "Torch backend
contract" to the "npcomp backend contract", which involves the new
TorchConversion (`torch_c`) dialect, which holds ops that need to
operate on both the npcomp backend types (e.g. builtin tensors, i1, IREE
list, etc.) and the `!torch` types.

This made more sense, as I realized that if I didn't factor out
`torch_c` then the Torch dialect would have a dependency on IREE
dialect (we previously didn't notice this was an issue because we only
depended on `builtin` types), which seemed wrong to me.

Recommended review order:
- TorchToIREE.cpp / `TorchToIREE/basic.mlir`
- Look at the new structure of createTorchScriptToNpcompBackendPipeline.
  It now lives in TorchConversion/Transforms/Passes.cpp and cleanly
  calls into `Torch::createTorchScriptToTorchBackendPipeline` for the
  frontend lowering to the Torch backend contract.
- Mechanical change extracting
  `torch_c.{to,from}_{i1,i64,f64,builtin_tensor,iree_list}` into a new
  TorchConversion dialect, and a few passes specific to the lowering
  from the Torch backend contract to the npcomp backend contract.
- Minor fixes to TorchToLinalg.cpp to use unconverted operands (now that
  we convert lists as part of operand materialization, we need to use
  the original operands). Also added test for AtenMaxPool2dOp and fixed
  m_TorchConstantIntList.
- TmpDeleteDeadIREELists pass. Temporary pass for deleting dead IREE lists that
  are created as part of operand materialization for conv/max pool/avg pool ops
  in TorchToLinalg.
2021-08-16 15:01:58 -07:00
Yi Zhang 0342b73bf1 Add torch.aten.flatten.using_ints and aten.MaxPool2d linalg lowering
- torch.aten.flatten.using_ints to linalg lowering
- torch.aten.max_pool2d to linalg lowering
- Support torch.aten.conv2d for more flexible dilation and strides values
2021-08-04 12:00:43 -04:00
Sean Silva 79928cd2dd Generalize support for elementwise ops.
We plumb through e2e a fair number of interesting cases:
- unary, binary, ternary elementwise ops
- ops like `torch.aten.add.Tensor` that also take a scalar parameter
- static size-1 broadcasting

We allow the static size-1 broadcasting case, but emit a runtime error
in the case of dynamic size-1 broadcasting. This seems like a sweet spot
subset of things that can be lowered directly to linalg, while not being
overly constraining to users. This is consistent with what IREE is doing
for CHLO->Linalg lowering as well
([code](50bf7a87e4/iree/compiler/InputConversion/MHLO/BroadcastingToLinalgPatterns.cpp (L1))).

To test the static size-1 case, we added support for the
`torch.aten.unsqueeze` op and lowering for it through
`linalg.tensor_expand_shape`. This involved a generalization of
`MaximizeValueSemantics` able to handle it (the solution there also
works for `torch.aten.flatten.using_ints` which we need for ResNet
anyway)

Also, a few minor additional changes:
- Add `VerifyInvariantsBeforeBackendLowering` pass, which catches a
  large class of errors before we get to backend lowering (now that we
  are doing dialect conversion, the errors are way nicer if we just emit
  them up front rather than in the guts of a random pattern).
- Minor change to RefBackend to allow `linalg.tensor_expand_shape`.

Recommended review order:
- e2e tests in elementwise.py
- `ConvertElementwiseOp` in TorchToLinalg.cpp + elementwise.mlir test
- `ConvertAtenUnsqueezeOp` in TorchToLinalg.cpp + unsqueeze.mlir test
- RefineTypes.cpp + tests
- MaximizeValueSemantics changes + test
- VerifyInvariantsBeforeBackendLowering pass + test
2021-06-28 13:28:38 -07:00
Yi Zhang 45f2edfc7a Add TorchToSCF pass.
1. Add TorchToSCF pass.
2. Convert prim.If and prim.If.yield.
2021-06-23 08:06:43 -07:00
Sean Silva 79aade33da Make MaximizeValueSemantics a bit smarter.
This adds a pattern to MaximizeValueSemantics which does a simple
abstract interpretation within a block, which handles simple cases of
`torch.overwrite_tensor`, enough to remove all the unnecessary uses of
non-value tensors in ResNet right now.

Before/after IR:
[gist](https://gist.github.com/silvasean/a3e1ef625b19dfc63579f73cd3b543b6)

Also,
- Split `torch.copy.tensor` into `torch.copy.to_tensor` and
  `torch.copy.to_vtensor` which convert between value and non-value
  semantic tensors. This is a much cleaner factorization as they have
  very separate use cases and properties (e.g. different side effects)
- Remove the various canonicalization patterns they had, which were
  confusing because they resulted in limited forms of maximizing value
  semantics throughout the pipeline. We should structure our compilation
  pipeline such that only MaximizeValueSemantics should be maximizing
  value semantics.
- Adjust pass pipeline to only run MaximizeValueSemantics once.
- Make OverwriteTensorOp `$value` always be a value tensor and
  `$overwritten` be a non-value tensor.
2021-06-22 16:48:57 -07:00
Sean Silva 40369c54dc Adjust pass pipeline for changes to `dim` canonicalization.
This results in cleaner IR. In particular, Mlp2LayerModule e2e test has
a dim op that is eliminated by this change:
https://gist.github.com/silvasean/734f11a291ae6236c955f65cffae285f
2021-06-17 16:59:55 -07:00
Sean Silva 224afb186e Add folders for torch.aten.gt.int / torch.aten.ne.int
This fixes a "regression" on ResNet where we weren't folding away all
the control flow. For now, our policy is to "optimize hard enough" to
make that control flow go away, because we don't yet have a way to lower
to the backend the stuff guarded by the control flow (RaiseException,
string operations, etc.).

It remains to be seen how much optimization we decide to do at this
level in the fullness of time -- the torch op set is not particularly
well-designed (at least not idiomatically for MLIR) for general
optimization. Ideally, with really good backend support for various
features, all the heavy optimization will happen at that layer on `std`
ops and `scf` control flow. But I have a suspicion we might end up
needing more optimization earlier in the pipeline.
2021-06-16 14:04:31 -07:00
Sean Silva 784156a998 Add `!torch.bool` type.
This finishes removing the dependence on the basicpy dialect!

Changes:
- Add `!torch.bool` type and replace use of `!basicpy.BoolType` in
  Torch-related code.
- Rename BuiltinTensorize to BackendTypeConversion since now it handles
  bool conversions (and, when we add !torch.int and !torch.float, it
  will handle those as well), and generalize the related utilities (I
  also moved them to Torch/Transforms since they aren't really part of
  Torch/IR).
  - Add `torch.to_i1` and `torch.from_i1` ops for materializations
- [cleanup] Reorganize `torch.constant.*` ops in TorchOps.td
- Remove dependency of `torch` dialect on `basicpy` dialect and also
  `std` dialect. For `std`, we use some call related ops, but the
  `torch` dialect itself never produces them (we have passes that do
  though).

This is fairly mechanical. Recommended review order:
- New stuff in Torch/IR
- New BuiltinTypeConversion files.
- Mechnical fixups elsewhere.
2021-06-16 13:22:00 -07:00
Sean Silva 370e3270ab Introduce `!torch.tensor` / `!torch.vtensor` types.
This removes our reliance on the numpy dialect and avoids our off-label
use of the builtin tnesor type for modeling unknown dtypes.  The
`!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor.
The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic
tensor. The new types look as follows syntactically:

```
// Least-static-information, non-value-semantic tensor.
!torch.tensor
// Explicit form of least-static-information variant.
!torch.tensor<*,unk>
// Least-static-information, value-semantic tensor.
!torch.vtensor
// Explicit form of least-static-information variant.
!torch.vtensor<*,unk>
// Fixed-set of allowable element types, with first-class support for
// Torch's frontend signedness semantics.
!torch.tensor<*,si32>
// First-class support for unknown dtypes.
!torch.tensor<[?,?,?],unk>
// Standard MLIR representation of `?` for unknown dimensions.
!torch.tensor<[?,2,?,4],unk>
// Statically shaped / dtyped example.
!torch.vtensor<[1,2,3,4],f32>
```

This required fairly significant changes throughout the compiler, but
overall it is a big cleanup. We now have a much clearer layering of "the
Torch frontend lowering" vs "lowering to std + linalg + etc.".

At the C++ level, there is `ValueTensorType`, `NonValueTensorType`.
We also have a helper `BaseTensorType` (kind of like ShapedType) which
interoperates with those two.

Included changes:
- New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for
  creating torch tensor literals in the frontend.
- Consistently use signedness for the types (except i1 which I didn't
  touch -- we need to sort out the situation with !basicpy.BoolType
  there anyway so will be attending to that soon)
- Frontend can annotate whether an argument to the function has value
  semantics. We currently require this, as our backend contract does not
  currently allow us to even model the non-value-semantic case. Before,
  the value-semantic assumption was randomly injected in the middle of
  the pass pipeline.
- Move ArrayToTensor (now called MaximizeValueSemantics) and
  RefinePublicReturn passes to torch dialect.
- The TorchToStd and TorchToLinalg passes are now type conversions from
  `!torch.vtensor` to `tensor` and use the dialect conversion infra.
  The overall conversion pipeline is set up following the best practices
  of the "Type Conversions the Not-So-Hard Way" talk. This required
  introducing `torch-func-builtin-tensorize` and
  `torch-finalizing-builtin-tensorize` passes analogous to the upstream
  bufferization passes with the corresponding names (mostly just
  copypasta from there).
- Misc Torch-level canonicalizations -- we now cleanly layer the
  lowering to std later in the pipeline, so we are gradually lessening
  our reliance on random std constant folding before we get to that
  point.

Recommended review order:
- New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp
- New ops in TorchOps.td / TorchOps.cpp
- Less important / more mechanical stuff
  - Frontend changes.
  - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-06-10 10:56:48 -07:00
Sean Silva 2efda323ff Significantly restructure torch/aten import design.
This is a really major and invasive restructuring of the way we get
torch operators (`torch::jit::Operator` / `c10::OperatorHandle`) into
MLIR. Please forgive the challenging review, but due to the sheer
invasiveness, it wasn't really practical do do it in sane smaller
pieces.

This fully replaces everything that was already working on the
TorchScript path (actually, more -- we added tanh support to
TorchToLinalg in order to delete the older code paths). Additionally,
I've kept the lights on for the acap path too, including what little e2e
stuff was working before (for expediency I made a few tiny compromises
along the way that will be easy to undo when we give that path proper
attention).

Overview of the new design:
- The torch operator `somens::someunqualname.someoverloadname` is
  imported as `torch.somens.someunqualname.someoverloadname` (skip the
  last dotted part if the overload name is empty), OR, if we don't have
  such an op registered, it is imported as
  `torch.operator "somens.someunqualname.someoverloadname" (...) : ...`.
  - The addition of the "overload name" is a critical element here, as
    the `(ns,unqual,overload)` triple is unique, which solves a lot of
    problems we were having.
  - This involves having separate MLIR ops for the `trailing_` and
    `.out` variants and all the different overloads. This seemed
    necessary, because the set of overloads is so wild and varied and
    unstructured. The previous design was leaning into some underlying
    structure that just isn't there -- the default situation is
    the "random overload that we want to manage on the MLIR side",
    rather than that being an exception. E.g.  `aten::ne` (not-equal)
    has 21 overloads, only 4 of which are c10 dispatcher ops see
    [gist](https://gist.github.com/silvasean/190ba918c550c956260e21254e1b8aa1),
    and the "out" variant is really called `.Tensor_out` instead of
    `.out` as it frequently is for other ops.
  - Rationale for all being in `torch` namespace: the set of operators
    are so varied and unstructured that "dialect per namespace"
    doesn't result in anything resembling the typical MLIR dialect
    boundary expectations. We could maybe draw the boundary at
    dispatcher ops vs non-dispatcher ops, but that doesn't seem to
    really result in very much useful structure at this point in time.
  - Note: within the torch operator registry, we effectively have a
    mini-basicpy subdialect (already type-resolved), which is reasonably
    structured.
  - The existing Torch op interfaces are also removed -- now that we
    track the overload name, we can losslessly find the original
    operator.
- Instead of `ATenRecognizeKernelsPass`, we now have a
  `ReduceOpVariantsPass` that keys off certain traits (and perhaps
  eventually interfaces) to reduce variants of ops to a smaller set,
  ideally operating on immutable tensors and using surrounding ops to
  model the mutability/aliasing aspects.
  - Note: `torch.ns.unqual.overload` ops allow both immutable and
    mutable tensors (unlike the previous hard distinction in the common
    case). This is a premonition for a future change that will introduce a
    bona fide `!torch.tensor` type that will clean up a bunch of stuff.
- `TorchToLinalg` / `TorchToStd` supercede the existing
  "ATen->TCF->TCP->Linalg" path.
- The new `torch_ods_gen.py` supercedes `torch_signature_ods_gen.py`.
  It should look somewhat familiar, but the benefit of hindsight has
  allowed a lot of simplifications.

The overall trend seems to be to make the `torch` dialect a nice layer
independent of anything else. It feels like as a natural result of
various future changes we will be removing the reliance on basicpy+numpy
dialects and have a nice self-contained type system too that properly
models the TorchScript type system (including proper subtyping,
mutable/immutable tensors, optional dtype, etc.).

Recommended review order:
- Start at some of the new import IR, e.g. in
  `frontends/pytorch/test/node_import/prim.py`,
  `frontends/pytorch/test/acap_export/test_export_add3.py`, and other
  tests.
- `frontends/pytorch/python/torch_mlir_utils/codegen/torch_ods_gen.py`
  and associated generated files:
  - `include/npcomp/Dialect/Torch/IR/GeneratedAtenOps.td`
  - `include/npcomp/Dialect/Torch/IR/GeneratedPrimOps.td`
- Inspect `ReduceOpVariants.cpp` / `reduce-op-variants.mlir` and the new
  traits in `include/npcomp/Dialect/Torch/IR/TorchTraits.h`
- Various code changes in the import path in
  `frontends/pytorch/csrc/builder`. Probably most interesting is the new
  code in `torch_to_mlir_utils.cpp` that has the logic to create the
  `torch.operator` ops or `torch.ns.unqual.overload` ops.

This is the [new ResNet IR](https://gist.github.com/silvasean/5407aafb710d07612b7b5b92eabecebe),
just to be able to look at a substantial sample of IR in the new style.
2021-05-19 13:37:39 -07:00
Sean Silva 55c3cc6624 Add recognition/folder/lowering for aten::__is__, aten::ne.int, and aten::dim
Interestingly, TorchScript has its own op (`torch::jit::Operator`)
registry separate from the dispatcher (it is a superset of the
dispatcher).

This is where the "prim" ops and some "aten" ops (that should probably
be renamed to "prim") live. In particular, `aten::__is__` is in that
latter category of "aten but really prim". This registry is also the
source of truth for what the TorchScript interpreter calls into when it
executes.

The bulk of the "not part of the dispatcher" ops live in
09feb5f579/torch/csrc/jit/runtime/register_prim_ops.cpp (L82)

And the registry itself lives in:
09feb5f579/torch/csrc/jit/runtime/operator.cpp (L196)

This fold further reduces the IR of ResNet by folding away some
more not-taken branches. These not-taken branches in ResNet require
first-class handling of the list type which we don't yet have on any
backend.
2021-04-30 10:57:02 -07:00
Sean Silva 7eb36b4ae7 Constant fold through basicpy.bool_cast.
This is the start of a push to getting ResNet running.

This involves throwing in the towel on an O0 pipelinie for now. See note
in the code. We keep an options struct with `optimize` flag, but it
default to true for now.
2021-04-30 10:57:02 -07:00
Sean Silva fb5f149e04 Reformat Passes.cpp and remove torch-globalize-pipeline.
The pipeline is subsumed by our lowering pipelines.
2021-04-30 10:57:02 -07:00
Sean Silva 9ba77c6e13 Add InlineGlobalSlots pass.
This inlines global slots if possible. This allows them to participate
in folding, canonicalization, shape inference, etc.

Example use cases:
- inlining weights and biases that are readonly during inference
- inlining the "training" bool to allow stuff to fold away

For training use cases (especially internal training loop), we will need
something smarter to get good performance. That would look like an "SSA
formation" which promotes the global slots to tensors in the program,
flushing them back to the slots at the minimal number of necessary
places. We might want to let backends do that transformation though.
This also interacts with shape inference (type bounds on the slots to
even lower them to backends in the first place).
2021-04-27 12:18:54 -07:00
Sean Silva 3a890aa26c Miscellaneous changes while trying to work on ResNet18
- Move frontend lowering pipelines to c++ (this helps with reproducing
  failures in npcomp-opt)
- Add debugging printouts when compilation fails on RefBackendTestConfig

The experience now when a test fails during MLIR lowering is now like this:
```
NPCOMP TorchScript Object Graph IR -> NPCOMP Backend IR lowering failed with the following diagnostics:
failed to legalize operation 'torch.global_slot'
Module does not conform to npcomp's backend contract. See dialect conversion legality information above.

Error can be reproduced with:
$ npcomp-opt -torchscript-to-npcomp-backend-pipeline /tmp/ResNet18Module.mlir
```

And when TorchScript->MLIR import fails it looks like this:
```
PyTorch TorchScript module -> NPCOMP Object Graph IR import failed with the following diagnostics:
unhandled prim operation: %18 : int = prim::min(%17) # /usr/local/google/home/silvasean/.local/lib/python3.9/site-packages/torch/nn/functional.py:4532:4
```

Also,
- Add `--filter=<regex>` to e2e test harness to filter tests.
- Add a few prim ops that were needed to import ResNet18
- Fix torch.prim.Loop.condition assemblyFormat (it previously would not
  round-trip in the case of no loop-carried variables)
2021-04-27 11:51:11 -07:00
Sean Silva 58c7030104 Support multiple instances of a class in GlobalizeObjectGraph.
This happens in practice with e.g. ResNet from torchvision (multiple
instances of the same BatchNorm class).

The key observation is that for this program, and the expected set of
programs, we can convert the program to the same globalized form with a
bit more static analysis and effort to suitably monomorphize the
program. Though what we are doing here is fairly annoying to implement,
it saves any nontrivial later pass from having to do similar analyses
(or worse). E.g. shape inference would need to be object-graph aware,
mutation/lifetime analyses would have to be aware, etc. Additionally, it
would make us front-load what it means to have a !torch.nn.Module type
on an ABI boundary, which we are just not ready to handle.

I'm really, really hoping that in practice we can get away with
this, otherwise it's going to be really rough designing a representation
(and implementing everything to back it) that is convenient to transform
and gracefully scales from full object graph (in the most dynamic case)
down to a fixed set of global slots like we have here (in the most
static case, which we presume a lot of practical programs fall into).

This also involved introducing a
`torch-prepare-for-globalize-object-graph` pass that does a minimal set of
lowerings to simplify the IR into a more orthogonal and analyzable form,
and a `torch-globalize-pipeline` helper.

Recommended review order:
- updated documentation in Passes.td
- new tests in `globalize-object-graph-multiple-instances*.mlir`
- implementation of GlobalizeObjectGraph.cpp
- PrepareForGlobalizeObjectGraph.cpp + prepare-for-globalize-object-graph.mlir
- misc stuff like torch-globalize-pipeline pipeline definition.

With this, we can import, globalize, and inline resnet18 from
torchvision:
https://gist.github.com/silvasean/821586afc19b67d9fb72030b2e0adeb8
2021-03-11 19:21:07 -08:00
Sean Silva 158c5c484d Implement GlobalizeObjectGraph transformation.
This required restructuring of how we model TorchScript on import. The
main difference is that now we split out a `torch.class_type` that holds
methods and declarations of the types of each slot. This is more
consistent with TorchScript (our previous representation was
"denormalized").

Recommended reading order:
1. check out the description of `torch.class_type` in `TorchOps.td` and
   look at `test/Dialect/Torch/ops.mlir` and
   `frontends/pytorch/test/module_import/` to familiarize with the new
   representation.
   - Just look at the new IR. The diff between the old names and new
     names is confusing.
2. check out `test/Dialect/Torch/globalize-object-graph*.mlir`
   and read along with the pass description in
   `include/npcomp/Dialect/Torch/Transforms/Passes.td`
3. Read the code in `GlobalizeObjectGraph.cpp` and miscellaneous changes
   in `ivalue_importer.cpp`, `TorchOps.cpp`, etc.
2021-02-18 18:18:47 -08:00