Commit Graph

12 Commits (d49eabb3fce6e24fa19b344096b7c5d61e367115)

Author SHA1 Message Date
Vimal fa39d91357
[FxImporter] Fix sympy_int_to_int utility (#3657)
New sympy type is introduced to represent integer infinity in upstream
PyTorch repo. Subsequently, sympy.oo is no longer used to represent
infinity upper bound for dynamic dimensions where the upper bound is
unknown. Instead `int_oo` is used to represent integer infinity. This
commit updates the `_sympy_int_to_int` utility in light of this change.
2024-08-26 09:31:17 -07:00
Vivek Khandelwal 22c9008bb9
build: Update Roll PyTorch version (#3548)
This commit also updates the PyTorch and Torchvision nightly links since
they are now moved to a different location.

PyTorch Nightly: https://download.pytorch.org/whl/nightly/cpu/torch/
Torchvision Nightly:
https://download.pytorch.org/whl/nightly/cpu/torchvision/

Disables dtype checks for some ops, tracked by https://github.com/llvm/torch-mlir/issues/3552

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-07-19 21:38:57 +05:30
Sambhav Jain d0a818a03e
Representing Symbolic Shape Expressions in Torch Dialect (#3372)
Torch Dialect with symbolic shape expressions:
```ll
module {                                                                                                                                                                                                     
  func.func @main(%arg0: !torch.vtensor<[?,?,3],f32>, %arg1: !torch.vtensor<[?,?,3],f32>) -> !torch.vtensor<[?,?,3],f32> {                                                                                   
    %0 = torch.symbolic_int "s0" {min_val = 5, max_val = 10} : !torch.int                                                                                                                                    
    %1 = torch.symbolic_int "s1" {min_val = 0, max_val = 100} : !torch.int                                                                                                                                   
    %2 = torch.symbolic_int "s3" {min_val = 0, max_val = 50} : !torch.int                                                                                                                                    
    
    torch.bind_symbolic_shape %arg0, [%0, %1], #affine_map<()[s0, s1] -> (s0, s1, 3)> : !torch.vtensor<[?,?,3],f32>                                                                                          
    torch.bind_symbolic_shape %arg1, [%0, %2], #affine_map<()[s0, s1] -> (s0, s1, 3)> : !torch.vtensor<[?,?,3],f32>                                                                                          
    
    %3 = torch.aten.tanh %arg0 : !torch.vtensor<[?,?,3],f32> -> !torch.vtensor<[?,?,3],f32>                                                                                                                  
    torch.bind_symbolic_shape %3, [%0, %1], #affine_map<()[s0, s1] -> (s0, s1, 3)> : !torch.vtensor<[?,?,3],f32>                                                                                             
    
    %4 = torch.aten.sigmoid %arg1 : !torch.vtensor<[?,?,3],f32> -> !torch.vtensor<[?,?,3],f32>                                                                                                               
    torch.bind_symbolic_shape %4, [%0, %2], #affine_map<()[s0, s1] -> (s0, s1, 3)> : !torch.vtensor<[?,?,3],f32>                                                                                             
    
    %5 = torch.prim.ListConstruct %3, %3, %4 : (!torch.vtensor<[?,?,3],f32>, !torch.vtensor<[?,?,3],f32>, !torch.vtensor<[?,?,3],f32>) -> !torch.list<vtensor>                                               
    %int1 = torch.constant.int 1                                                                                                                                                                             
    %6 = torch.aten.cat %5, %int1 : !torch.list<vtensor>, !torch.int -> !torch.vtensor<[?,?,3],f32>                                                                                                          
    torch.bind_symbolic_shape %6, [%0, %1, %2], #affine_map<()[s0, s1, s2] -> (s0, s1 * 2 + s2, 3)> : !torch.vtensor<[?,?,3],f32>                                                                            
    
    return %6 : !torch.vtensor<[?,?,3],f32>                                                                                                                                                                  
  }                                                                                                                                                                                                          
}              
```

For reference, this is the TorchDynamo exported program with symbolic
shape expressions that the above Torch dialect program is imported from:
```py
ExportedProgram:                                                                                                                                                                                             
    class GraphModule(torch.nn.Module):                                                                                                                                                                      
        def forward(self, x: "f32[s0, s1, 3]", y: "f32[s0, s3, 3]"):                                                                                                                                         
            # File: /home/sambhav.jain/workspaces/cruise/src/3p/torch-mlir/test/python/fx_importer/symbolic_shape_expr_test.py:31 in forward, code: a = torch.tanh(x)                                        
            tanh: "f32[s0, s1, 3]" = torch.ops.aten.tanh.default(x);  x = None                                                                                                                               
                                                                                                                                                                                                             
            # File: /home/sambhav.jain/workspaces/cruise/src/3p/torch-mlir/test/python/fx_importer/symbolic_shape_expr_test.py:32 in forward, code: b = torch.sigmoid(y)                                     
            sigmoid: "f32[s0, s3, 3]" = torch.ops.aten.sigmoid.default(y);  y = None                                                                                                                         
                                                                                                                                                                                                             
            # File: /home/sambhav.jain/workspaces/cruise/src/3p/torch-mlir/test/python/fx_importer/symbolic_shape_expr_test.py:33 in forward, code: return torch.cat((a, a, b), dim=1)                       
            cat: "f32[s0, 2*s1 + s3, 3]" = torch.ops.aten.cat.default([tanh, tanh, sigmoid], 1);  tanh = sigmoid = None                                                                                      
            return (cat,)                                                                                                                                                                                    
                                                                                                                                                                                                             
Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='y'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='cat'), target=None)])                                               
Range constraints: {s0: ValueRanges(lower=5, upper=10, is_bool=False), s1: ValueRanges(lower=0, upper=100, is_bool=False), s3: ValueRanges(lower=0, upper=50, is_bool=False)} 
```

Huge credit to @stellaraccident for the inputs that helped evaluate the
various design options and arrive at the representation of choice.


- [x] Op definitions for symbolic_int and bind_symbolic_shape ops
- [x] fx_importer updates to import range constraints + create
symbolic_int ops
- [x] fx_importer changes for AffineMapAttr building + adding
bind_symbolic_shape ops
- [x] custom printer/parser for inlined AffineMap expressions in mlir
assembly
- [x] Dialect lit test
- [x] fx_importer python lit tests
- [ ] Cleanup pass to remove these ops (can add in a follow-on)
2024-06-07 04:04:03 -07:00
Sambhav Jain 2176176fef
[FX] Add broadcast test with dynamic dim (#3123)
This scenario was uncovered in a downstream test that failed with a
previous snapshot of torch-mlir. See
https://github.com/cruise-automation/mlir-tcp/actions/runs/8605480116/job/23581829102?pr=65.
```
  File "/home/runner/.cache/bazel/_bazel_runner/ce288f117ee4ca92dc028a6a28476a3d/sandbox/processwrapper-sandbox/2380/execroot/mlir-tcp/bazel-out/k8-opt-exec-2B5CBBC6/bin/test/AotCompile/broadcast_unit_dim_to_dynamic_with_unchanged_dim_dynamic_torch_exporter.runfiles/pip_deps_torch_mlir/site-packages/torch_mlir/extras/fx_importer.py", line 969, in value_info_to_type
    raise NotImplementedError(
NotImplementedError: Could not deduce type from value info: tensor_meta=None, val=s1, sparsity=None
```
It seems to have resolved on current HEAD. Adding this test to ensure
coverage in the future.
2024-04-29 09:21:12 -07:00
Stella Laurenzo 6877302504
[NFC reformat] Applies pre-commit formatting to Python files. (#3244)
This is a large change because prior to this point, Python files in the
project were not consistently formatted. This reformats them all with
black defaults.

Based on experience with prior projects, if you have a dev/long-term
branch with Python patches, you can minimize merge conflicts prior to
rebasing to include this commit by running `black` on your modified
Python files, squashing, and then rebasing/merging.
2024-04-27 14:16:31 -07:00
penguin_wwy af5509c5d9
[FxImporter] Type conversion to resolve the mismatch between Py type and schema type (#3163) 2024-04-15 23:14:19 -07:00
penguin_wwy 7616d637fd
Add stateless fx graph import (#3036) 2024-03-21 14:44:54 -07:00
Sambhav Jain 0b2f9c89a2
Bring back `dynamic_shapes` constraints in fx importer API (#3026)
https://github.com/llvm/torch-mlir/pull/2992 dropped `constraints` from
the fx importer API,
[breaking](https://github.com/cruise-automation/mlir-tcp/actions/runs/8284385380/job/22669774071)
downstream AOT compile tests in `mlir-tcp` that use it. This knob has
been soft-deprecated for a while now, replaced by `dynamic_shapes` - a
more ergonomic interface. This PR brings back dynamic_shapes constraints
in the new supported form. Also added a python lit test with dynamic
shaped annotations.
2024-03-14 10:26:34 -07:00
Sambhav Jain 3cbe6c98ec
Expose `func_name` to the main fx import API (#2949)
As titled.
2024-02-26 10:08:14 -08:00
saienduri bfcf93ea21
Rename torch_mlir.compile APIs and introduce FX based analogs (#2842)
Link to related RFC:
https://discourse.llvm.org/t/rfc-rename-torch-mlir-compile-apis-and-introduce-fx-based-analogs/76646
This commit updates the documentation, tests, CMake files, and API for
the proposed changes in the RFC. There is a new torch_mlir/fx.py for
user level APIs related to importing modules and a corresponding test
for this path can be found at test/python/fx_importer/basic_test.py.

---------

Co-authored-by: MaheshRavishankar <mravisha@amd.com>
2024-02-06 19:07:59 -08:00
Daniel Garvey faf7d4aaa5
[fx_importer] Add support for 0D tensors (#2870)
Adds an escape hatch from creating a DenseResourceElementsAttr for
single value tensors into DenseElementsAttr.

For 0d or 1element, splats are better as DenseElementsAttr. Don't use
DenseResourceElementsAttr for it
2024-02-06 00:19:31 -06:00
Stella Laurenzo ccd469ca0d
[fx] Upstream the turbine FxImporter to torch-mlir. (#2681)
Changes made during upstreaming:

* Removed comments attributing some copied code back to torch-mlir
(since it is now repatriated).
* Re-organized imports.
* Inlined RefMapping/RefTracker and TypeSubclassMap from an external
utility module.
* Added FxImporter class comments.
* Updated stack trace extraction to be fail safe.
* Added an entry-point for `import_frozen_exported_program` which uses
the shiny new upstream `torch.export.export()` API (versus the
lower-level/older API that Turbine is presently using). This
necessitated a small FX rewrite to line external state management up
with current conventions.
* Adapted one of Turbine's importer tests to go with this initial
submission. Turbine unfortunately has a lot of more-integration-ey
tests, and I would like to extract those as more of unit tests of the
importer features and upstream them that way vs trying to copy directly.
For now, one overall test with the initial submission gets us moving.

I acknowledge that there are some code quality things that could be
improved in this submission: this was authored over the course of many
months (and often via some trial and error). I would like to keep it
relatively converged with the downstream for the next few steps while
getting the test suite upstreamed. And then it will be easier to take a
hygienic pass through the code.

Including co-authors for contributors in the git log of the original
repository.

Co-authored-by: Ean Garvey <87458719+monorimet@users.noreply.github.com>
Co-authored-by: Avinash Sharma <aviator1994@gmail.com>
Co-authored-by: Arham Khan <arhammkhan@gmail.com>
Co-authored-by: brucekimrokcmu <kwangkyk@alumni.cmu.edu>
Co-authored-by: saienduri <77521230+saienduri@users.noreply.github.com>
2023-12-21 08:40:10 -08:00