1. Changes the linalg lowering for dequantization ops to always sign
cast to float to prevent misrepresenting uint32 overflow on subtraction
with zero point.
2. Adds a basic quantized model test which only quantizes and
dequantizes and now passes with these changes in linalg and onnx
configs.
3. Changes the aten.mm lowering to allow mismatched quantized types.
4. If a quantized matmul arg is uint8, we shift by 128 to faithfully
represent the quantization as a signed i8 quantization. This worked fine
in the AtenMmOp lowering, but I'd be happy to move it to a rewrite in
FuseQuantizedOps.cpp instead if that seems more appropriate.
With the changes 3 and 4, the QuantizedMLP_basic and
QuantizedSingleLayer_basic e2e tests now passes with the onnx config.
Squeezes can be ambiguous without the output shape information. For
instance (1, 1, 256) squeezed can be either (1, 256) or (256). We need
to check the resulting shape to know what the shape should look like.
Shapes can be processed as tensors to represent the set of dimensions.
As reshapes take a list of scalars this can result in a single dynamic
dimension blocking the adjacent static dimensions.
This pass attempts to de-couple tensor computations related to shapes
and propagate values to better support lowering scalar tensor
computations.
The `convertTensorToElementType` function expects it's argument to have
a valid tensor type that is not `Torch::NoneType`. This PR checks that
the bias tensor is not of type `Torch::NoneType` before calling
`convertTensorToElementType` on the bias tensor argument in the
`matchAndRewrite` member function of the `ConvertAtenConvolutionOp`
class.
See the related issues here:
[SHARK-Turbine#556](https://github.com/nod-ai/SHARK-Turbine/issues/556)
1. Adds uint8 casting to onnx.Cast op
2. Fixes an issue with onnx.DequantizeLinear when the scale comes with
shape [1].
3. Adds support for unsigned types in an AtenItemOp folder
4. Adds a simpler quantized model for easier debugging
5. Adds a fusion pass to convert [quant -> dequant -> transpose -> mm]
patterns to [transpose -> quant -> mm].
6. Moved some xfails that are still not passing, but for different
reasons than onnx.cast failures.
Reshaping tensors depend on directly matching individual dimensions to
their corresponding dim in the `torch.view` reshape dimensions. This
involves decoupling dynamic dimensions from their static counterparts
and support cleanup / canonicalization.
The previous conversions for AtenAdaptiveAvgPool1dOp and
AtenAdaptiveMaxPool2dOp are refactored into a general templated
conversion that works for all of the AtenAdaptive...PoolNdOp's.
New support is added for the following ops:
1. AtenAdaptiveMaxPool1d
2. AtenAdaptiveMaxPool3d
3. AtenAdaptiveAvgPool3d
Support is also provided for passing inputs without batch dimensions.
For example, applying adaptive_avg_pool2d to an input tensor of rank 3.
After [pytorch #118162](https://github.com/pytorch/pytorch/pull/118162)
gets down to torch-mlir, I'll add a test for AdaptiveMaxPool1d with
return_indices (which will pass with that upstream fix).
---------
Co-authored-by: James Newling <james.newling@gmail.com>
The current padding operation was not functional for dynamic shapes.
Updated and enabled tests so that onnx.pad tests pass.
Work TBD for reflection padding.
This mostly copy-pastes the reduce minimum implementation to reduce max
to improve test coverage. We also improve the aten lowering for min/max
dim for unsigned types.
The addition of an e2e test is actually provided in the Shark-Testsuite.
This adds 2 test cases for the gridsampler e2e test.
Also as intended there were some items found which needed correction, so
the Gridsampler op has also a change.
Existing lowering via aten.view does not work as well for dynamic shapes
as the lowering to tensor.expand must re-infer dynamic shape matching.
Better to directly lower.
A bunch of small fixes are interlinked and trigger crashes if not
addressed as a group. This includes:
- aten view when expand from a rank-0 tensor
- slice folder with negative indices
- `aten._shape_as_tensor` folder on a rank-0 tensor
- `aten.cat` of a tensor with a length-0 tensor
Torch lowering only supported the most recent version. Refactored the
lowering so more easily handle default values and optional operands /
attributes.
Strided slicing can occur with a negative stride. In these cases we need
to bound end differently. This included removing a function that was
generating bad limits.
We can route the torch tests via `onnx` using the `torch.onnx.export`
tooling. We can then reimport, lower to torch, and compile to linalg to
validate the onnx path is working correctly.
The current implementation exposes some failures in the `onnx` path so
we cannot enable the onnx test suite yet due to segmentation faults.
This commit adds the OnnxToTorch lowering for cosh, acosh, asin, asinh,
and atanh op.
This commit also adds the TorchToLinalg lowering for acosh, asin, asinh,
and atanh op.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
By updating convertScalarToDtype invocation pass original source and
destination datatypes for the add op. Also fixes a potential problem
with the sub op.
---------
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
There is no lowering support for math::AbsIOp, so if the operand is an
integer type, it will fail to lower to math::AbsFOp since the op operand
#0 must be floating-point-like.
Lowering of torch.aten.all.dim to linalg.
Per PyTorch documentation:
> This function matches the behaviour of NumPy in returning output of
dtype bool for all supported dtypes except uint8. For uint8 the dtype of
output is uint8 itself.
Since there is no support for ui8 in torch-mlir currently
(https://github.com/llvm/torch-mlir/pull/1384#issuecomment-1260011334)
implementation returns failure for that case.
Leaning on the QDQ functionality in torch we can support the QLinearConv
operation by piggybacking through `torch.Convolution`. This includes
some changes such as allowing the `onnx` rewriter to run recursively.
Doing so allows `QLinearConv` to decopmose to `onnx.Convolution` which
is then lowered to `torch`.
We do not support average pool when `countIncludePad is set to false.
However if the input is unpadded then the setting of the boolean is
unneeded. Extended use by checking if padding is zero before rejecting
the lowering.
Linalg has quantized specific operations. We can lower to these
operations when there is a known zeropoint and scale operations. This
allows the `convolution` to occur with lower bitwidth's, improving the
overall performance.
After noticing a number of commits with unrelated formatting changes,
I think something was changed with clang-format at one point and we're
seeing a number of unrelated changes. Doing a refresh can help avoid
this.
The changes made here came from
```
find lib -iname *.h -o -iname *.cpp | xargs clang-format -i --style=llvm
find include -iname *.h -o -iname *.cpp | xargs clang-format -i --style=llvm
find projects -iname *.h -o -iname *.cpp | xargs clang-format -i --style=llvm
```
This preserves sparsity at the most obvious places of lowering TORCH
tensors to MLIR RankedTensorType tensors. Other places are marked for
audit. With some initial lowering tests.
This includes custom op matching for decomposed operations and fusing
dequantization into dense operations. As a validation we compare
to the dequant+mm torch implementation.
The logic here is very similar to the conversion for AdaptiveAvgPool1d
#2661 with a few modifications:
1. buffVal = -inf instead of 0
2. the main linalg generic op accumulates a max, instead of a sum, to
the first output tensor
3. avg pooling requires dividing the sum pool by the kernel width, which
we stored as an auxilliary tensor (kSizeTensor). Here, the auxiliary
tensor will be recording the indices. Strangely enough, the only
signature available for this function is to return indices, and it
appears that they must be computed whether the user desires them or not.
See
[pytorch/torch/nn/functional.py](https://github.com/pytorch/pytorch/blob/main/torch/nn/functional.py#L1174).
Before writing other adaptive pooling conversions, the logic of this
decomposition should be rolled into a helper function that will work for
both max and avg pooling ops. Even the auxiliary tensor should likely be
automated. This code was written in a slightly more tedious way than
strictly necessary (often using loops to fill SmallVectors up to rank-2,
which is only two in this case), in order to more easily facilitate the
transition to a helper function.
convolution with [time,batch,channel] ordering, as opposed to the
default [batch, channel, time]. Currently implementing by transposing
the input and output, but may need to get its own implementation in the
future because this is supposed to be an op that gives a speedup. This
is used by fairseq
(https://github.com/facebookresearch/fairseq/issues/172).
(in case you were wondering like me, this is different from transposed
convolution. Transposed convolution has fractional strides).
---------
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
Co-authored-by: Frederik Harwath <frederik.harwath@amd.com>
Introduced in 704cfdaf08 of @wu-s-john
g++ compiler error:
Pooling.cpp:177:13: error: explicit specialization in non-namespace
scope ‘class
Design looks good, g++ is just freaking out for no good reason.
Un-nesting the template classes fixes the error.
We don't have g++ CI. This hopefully happens infrequently enough that we
can just fix manually. My service to those folks who really like
building with g++... :)