Commit Graph

61 Commits (d4ea39b616ff38162a340292e53928b645a6494b)

Author SHA1 Message Date
Sean Silva e749074bae Basic infra for annotate shapes and dtypes on arguments.
These allow users to annotate a known "type bound" on the argument,
which can seed shape/dtype inference. We don't rewrite the function
types as part of the import process (it will happen in a
yet-to-be-written pass) because:

1. We would need to interprocedurally rewrite all calls to keep the IR
   consistent. Currently, we have a place after GlobalizeObjectGraph but
   before we convert to tensors where this is convenient to do. Ideally,
   we would do this on the object graph representation.

1. We don't necessarily know that adjusting the function type is a legal
   calling convention change. The pass will have blessed knowledge (by
   the pass pipeline author) that adjusting the argument type based on
   the type bound is safe (which it frequently is).

2. Note that in principle, a type bound could be a fairly general thing
   (such as maximum sizes of dimensions, unions of multiple concrete
   types, etc.). The pass will in principle have logic to interpret the
   type bounds and to determine a suitable "best" (and legal) argument
   type.
2021-04-01 18:40:03 -07:00
Sean Silva 99178a167d Bump llvm-project to 0524a09cc7e1a0797982feacf505825231efbee7
- renames of OwningRewritePatternList -> RewritePatternSet
  - also `insert` to `add`
- RewritePatternSet holds a context now
- memref dialect split from std
2021-03-23 14:29:05 -07:00
Sean Silva 43dba03afd Properly model "derefinement".
In terms of IR structure, TorchScript allows types to vary in many
circumstances where MLIR requires pointer-identical types. In particular,
it is valid to pass any subtype in place of a type. For example, if an
`Optional[int]` is required somewhere in the IR, it is legal to pass a
value of just `int` (but not the other way around; see
`torch.prim.unchecked_cast`). In effect, every *use* can have a different
type.

We introduce a new op `torch.derefine` that models that impedance
mismatch. This op allows casting a value from one type to a type that it
is a subtype of to model this behavior.

Recommended review order:
- TorchOps.td for new torch.derefine (and updated docs for
  `torch.prim.unchecked_cast`)
- new test code in if.py, loop.py, function-derefine.py
- new code in node_importer.cpp for handling derefinement insertion
- function_importer.cpp and utils changes in torch_to_mlir_utils.cpp

Properly handling derefinement on function boundaries required
relayering the code so that graph_importer.cpp/.h is now
function_importer.cpp/.h because only the `torch::jit::Function`
(actually the `c10::FunctionSchema` it holds) knows the derefined types that are
actually needed at the boundary (see `function-derefine.py` for a test).

Annoyingly, this churns all the functions which are now prefixed with
`__torch__.` but that is more correct anyway (that is their linkage name
in the `torch::jit::CompilationUnit`; the previous `mb.import_function`
was actually buggy in the case of functions calling each other as it
would reference their unqualified name).

With this change, we can import `resnet18` from `torchvision` :)
IR: https://gist.github.com/silvasean/6426a5272d8a6c7caae533fce05ab704
2021-03-03 15:09:44 -08:00
Sean Silva 939d36906f Add support for prim::Loop op.
This is a funny one. It combines a `for` and `while` loop in one op. We
will need to write some conversions to `scf`.
2021-03-02 16:01:34 -08:00
Sean Silva 8486968925 Add trivial inliner interfaces.
With this + manually setting private visibility on everything, a simple
classifier can be reduced to this IR, which is looking pretty lean and
mean:
https://gist.github.com/silvasean/19e7e2e21a61ff197aeac0dd864d188f

Also, include a utility script for importing `.pt` models.

```
pt_util.py --import classifier.pt | npcomp-opt -torch-globalize-object-graph
```
2021-02-22 10:40:38 -08:00
Sean Silva 158c5c484d Implement GlobalizeObjectGraph transformation.
This required restructuring of how we model TorchScript on import. The
main difference is that now we split out a `torch.class_type` that holds
methods and declarations of the types of each slot. This is more
consistent with TorchScript (our previous representation was
"denormalized").

Recommended reading order:
1. check out the description of `torch.class_type` in `TorchOps.td` and
   look at `test/Dialect/Torch/ops.mlir` and
   `frontends/pytorch/test/module_import/` to familiarize with the new
   representation.
   - Just look at the new IR. The diff between the old names and new
     names is confusing.
2. check out `test/Dialect/Torch/globalize-object-graph*.mlir`
   and read along with the pass description in
   `include/npcomp/Dialect/Torch/Transforms/Passes.td`
3. Read the code in `GlobalizeObjectGraph.cpp` and miscellaneous changes
   in `ivalue_importer.cpp`, `TorchOps.cpp`, etc.
2021-02-18 18:18:47 -08:00
Sean Silva 689b40c7a6 Add initial TorchScript module importer
It turns out that this was easiest to structure as a general IValue
importer, since torch module are just one of the possible IValue's.

We import the IValue object graph in a braindead fashion into basicpy
ops and a new `torch.nn_module` op that is used to model the
attributes/methods of a torch::jit::Module IValue. See `Torch/ops.mlir`
for an example, and also check out the .py import tests in
`frontends/pytorch/test/module_import`.

As part of this change, a few housekeeping tasks:
- extract some helpers from graph_importer.cpp
- more helpers around the C API
- misc touchups
2021-01-28 11:55:17 -08:00
Stella Laurenzo 510f226df2 Expose signature metadata to ops and implement ATenRecognizeKernelsPass pass.
* Two op interfaces, one for querying instance metadata and one for getting static data needed to construct an op from a generic form.
* For torch.generic_kernel ops, metadata is splatted in during capture from Torch (it comes from the op registry, which will work for either device capture or graph import).
* Moved the 'add' out of the generated set so I can experiment on it. It implements the TorchBuildableKernelOpInterface interface which provides its metadata.
* The ATenRecognizeKernelsPass pass generically lowers from a torch.generic_kernel to recognized ops that implement the TorchBuildableKernelOpInterface, handling the various types of transformations that we allow at this stage.
2020-10-26 20:31:45 -07:00
Stella Laurenzo af4edb63ae Start reworking towards a shared library build.
* Need to have a dag of shared library deps in order to interop across python extensions (as presented in ODM).
* Introduced add_npcomp_library and friends to mirror the MLIR setup.
* Adds a libNPCOMP.so shared library.
* Redirects tools and extensions to link against libNPCOMP.so (instead of static libs).
* Moves all libraries to lib/, all binaries to bin/ and all python extensions to python/. The invariant is that the rpaths are setup to have a one level directory structure.
* Reworks the _torch_mlir extension to build like the others (still need to come up with a consolidated rule to do this instead of open coded).
* Includes an upstream version bump to pick up needed changes.

Sizes with dynamic linking (stripped, release, asserts enabled):
  libNPCOMP.so: 43M (includes much of the underlying LLVM codegen deps)
  libMLIR.so: 31M
  _npcomp.so: 1.6M (python extension)
  _torch_mlir.so: 670K (python extension)
  npcomp-capi-ir-test: 6.3K
  npcomp-opt: 351K
  npcomp-run-mlir: 461K
  mnist-playground: 530K

Still more can be done to normalize and optimize but this gets us structurally to the starting point.
2020-10-09 16:02:58 -07:00
Stella Laurenzo 3d74337be0 Add a torch.kernel_call op and associated predicates. 2020-09-29 15:10:38 -07:00
Stella Laurenzo 2c9ca79c89 Add boilerplate for Torch dialect. 2020-09-28 15:26:17 -07:00