Commit Graph

17 Commits (d50ea8d31e7b641dccf090bc8e5b62c7680b8126)

Author SHA1 Message Date
Sean Silva 2efda323ff Significantly restructure torch/aten import design.
This is a really major and invasive restructuring of the way we get
torch operators (`torch::jit::Operator` / `c10::OperatorHandle`) into
MLIR. Please forgive the challenging review, but due to the sheer
invasiveness, it wasn't really practical do do it in sane smaller
pieces.

This fully replaces everything that was already working on the
TorchScript path (actually, more -- we added tanh support to
TorchToLinalg in order to delete the older code paths). Additionally,
I've kept the lights on for the acap path too, including what little e2e
stuff was working before (for expediency I made a few tiny compromises
along the way that will be easy to undo when we give that path proper
attention).

Overview of the new design:
- The torch operator `somens::someunqualname.someoverloadname` is
  imported as `torch.somens.someunqualname.someoverloadname` (skip the
  last dotted part if the overload name is empty), OR, if we don't have
  such an op registered, it is imported as
  `torch.operator "somens.someunqualname.someoverloadname" (...) : ...`.
  - The addition of the "overload name" is a critical element here, as
    the `(ns,unqual,overload)` triple is unique, which solves a lot of
    problems we were having.
  - This involves having separate MLIR ops for the `trailing_` and
    `.out` variants and all the different overloads. This seemed
    necessary, because the set of overloads is so wild and varied and
    unstructured. The previous design was leaning into some underlying
    structure that just isn't there -- the default situation is
    the "random overload that we want to manage on the MLIR side",
    rather than that being an exception. E.g.  `aten::ne` (not-equal)
    has 21 overloads, only 4 of which are c10 dispatcher ops see
    [gist](https://gist.github.com/silvasean/190ba918c550c956260e21254e1b8aa1),
    and the "out" variant is really called `.Tensor_out` instead of
    `.out` as it frequently is for other ops.
  - Rationale for all being in `torch` namespace: the set of operators
    are so varied and unstructured that "dialect per namespace"
    doesn't result in anything resembling the typical MLIR dialect
    boundary expectations. We could maybe draw the boundary at
    dispatcher ops vs non-dispatcher ops, but that doesn't seem to
    really result in very much useful structure at this point in time.
  - Note: within the torch operator registry, we effectively have a
    mini-basicpy subdialect (already type-resolved), which is reasonably
    structured.
  - The existing Torch op interfaces are also removed -- now that we
    track the overload name, we can losslessly find the original
    operator.
- Instead of `ATenRecognizeKernelsPass`, we now have a
  `ReduceOpVariantsPass` that keys off certain traits (and perhaps
  eventually interfaces) to reduce variants of ops to a smaller set,
  ideally operating on immutable tensors and using surrounding ops to
  model the mutability/aliasing aspects.
  - Note: `torch.ns.unqual.overload` ops allow both immutable and
    mutable tensors (unlike the previous hard distinction in the common
    case). This is a premonition for a future change that will introduce a
    bona fide `!torch.tensor` type that will clean up a bunch of stuff.
- `TorchToLinalg` / `TorchToStd` supercede the existing
  "ATen->TCF->TCP->Linalg" path.
- The new `torch_ods_gen.py` supercedes `torch_signature_ods_gen.py`.
  It should look somewhat familiar, but the benefit of hindsight has
  allowed a lot of simplifications.

The overall trend seems to be to make the `torch` dialect a nice layer
independent of anything else. It feels like as a natural result of
various future changes we will be removing the reliance on basicpy+numpy
dialects and have a nice self-contained type system too that properly
models the TorchScript type system (including proper subtyping,
mutable/immutable tensors, optional dtype, etc.).

Recommended review order:
- Start at some of the new import IR, e.g. in
  `frontends/pytorch/test/node_import/prim.py`,
  `frontends/pytorch/test/acap_export/test_export_add3.py`, and other
  tests.
- `frontends/pytorch/python/torch_mlir_utils/codegen/torch_ods_gen.py`
  and associated generated files:
  - `include/npcomp/Dialect/Torch/IR/GeneratedAtenOps.td`
  - `include/npcomp/Dialect/Torch/IR/GeneratedPrimOps.td`
- Inspect `ReduceOpVariants.cpp` / `reduce-op-variants.mlir` and the new
  traits in `include/npcomp/Dialect/Torch/IR/TorchTraits.h`
- Various code changes in the import path in
  `frontends/pytorch/csrc/builder`. Probably most interesting is the new
  code in `torch_to_mlir_utils.cpp` that has the logic to create the
  `torch.operator` ops or `torch.ns.unqual.overload` ops.

This is the [new ResNet IR](https://gist.github.com/silvasean/5407aafb710d07612b7b5b92eabecebe),
just to be able to look at a substantial sample of IR in the new style.
2021-05-19 13:37:39 -07:00
Sean Silva 99178a167d Bump llvm-project to 0524a09cc7e1a0797982feacf505825231efbee7
- renames of OwningRewritePatternList -> RewritePatternSet
  - also `insert` to `add`
- RewritePatternSet holds a context now
- memref dialect split from std
2021-03-23 14:29:05 -07:00
Bairen Yi fead0312f1 Revert "Also fallback autograd dispatch keys for torchvision::nms"
This reverts commit 30a42dea32.
2021-03-16 19:37:45 -07:00
Bairen Yi 30a42dea32 Also fallback autograd dispatch keys for torchvision::nms
Signed-off-by: Bairen Yi <yibairen.byron@bytedance.com>
2021-03-15 17:58:08 -07:00
Sean Silva a36113e586 Fix recent break due to PyTorch changes.
Tracing seems now now capture a 4-operand version of aten::add instead
of 3-operand.

I fixed the tests that made sense. One test was XFAIL'ed, as I don't
have in cache the exact way to fix it yet (requires touching
aten-recogniz-kernels stuff).  I'll be context switching to work on the
kernel recognition stuff soon, and will fix it then.
2021-03-03 18:35:23 -08:00
Sean Silva c4e4a11e3f Add support for prim::GetAttr/SetAttr/CallMethod/If
This required some invasive surgery to graph_importer.h/cpp,
specifically moving most of it into node_importer.h/cpp and relayering
it. The abstraction that it had didn't work well in the recursive
setting that happens with prim::If.

The key observation is that torch::jit::Graph doesn't really correspond
directly to anything on the MLIR side. It's a weird combination of a
context, builder, and function and just holds a `torch::jit::Block`. It
is `torch::jit::Node` and `torch::jit::Block` which form the recursive
structure analogous to MLIR's operation/region/block. So
node_importer.h/cpp makes sense as a core building block.

As part of doing this, I did venture a bit into the AcapController code,
and realize now that there is functionality duplicated there with the
ivalue importer. Will refactor that soon.
2021-02-04 17:01:47 -08:00
Stella Laurenzo 78a3c90758 Add TorchScript graph importer.
* Does not handle all features yet but should conservatively fail on unsupported things.
* Location tracking is still somewhat mismatched between what TorchScript and MLIR do. Likely need a better heuristic for tracking locations from defs for nodes that do not carry location.
* Sets the ground-work for a specialized/generic split but only implements the generic side.
* Had some evidence that this requires a recent bump of PT nightly (within the last month) to pick up pybind11 2.6, which includes some cross-module symbol fixes (vs the previously sync'd version). No source changes, but older versions fail to cast function types at runtime.
2020-11-23 14:20:09 -08:00
Stella Laurenzo e359167562 Fix dispatch of arange.
* Fixes #107
* I wouldn't say I love what had to be done here. Worth a conversation with the PT devs (probably as part of a rollup of a bunch of this stuff).
2020-11-12 22:07:23 -08:00
Harsh Menon c2d3820e48 Fix insertion point bug #102
The current code was inserting all build_list ops
after the last constant op since it was assuming that all
elements being passed in were constants.

This patch replaces that patch with a new function that
inserts the build_list ops before the terminator.

Also modifies test_export_conv2d_fwd.py since its output
no longer matches.

TEST: Added test_export_cat.py which is the code in #102
2020-11-02 16:41:26 -08:00
Stella Laurenzo 0c73c535d6 Capture backward conv and copy_ kernels.
* This is sufficient to capture the forward and backward pass and gradients of a convolutional model with an nllloss.
* As with the forward conv, the backward conv is a special case wrapped in an enigma on the PyTorch side. There aren't many like it, so special casing is just what we do.
* When I traced this, I found that the copy_ op is not yet boxing compatible so I had to map it manually. If there are many more like this, I'll probably do something a bit more clever to reduce duplication.
* This exposes new signature patterns that will need to be handled by the ATen lowering. Will take care of that next: It will be nice to have an e2e of a non-trivial case with full gradients.
* Fixes #97.
2020-10-30 22:59:26 -07:00
Stella Laurenzo 8d98dd4551 Support optional args/returns and other odds and ends.
* None's out Device? args.
* Emits bool tensors if needed.
* Adds some stderr tracing to better see what is going on.
* Test case that exercises NLLLoss.
* This test case emits something for backward calculations but there are some issues still to be worked out, so that part is left out of the test case.
* Progress on #97
2020-10-30 14:50:28 -07:00
Stella Laurenzo 510f226df2 Expose signature metadata to ops and implement ATenRecognizeKernelsPass pass.
* Two op interfaces, one for querying instance metadata and one for getting static data needed to construct an op from a generic form.
* For torch.generic_kernel ops, metadata is splatted in during capture from Torch (it comes from the op registry, which will work for either device capture or graph import).
* Moved the 'add' out of the generated set so I can experiment on it. It implements the TorchBuildableKernelOpInterface interface which provides its metadata.
* The ATenRecognizeKernelsPass pass generically lowers from a torch.generic_kernel to recognized ops that implement the TorchBuildableKernelOpInterface, handling the various types of transformations that we allow at this stage.
2020-10-26 20:31:45 -07:00
Stella Laurenzo d09300886a NFC: Use new print with large_elements_limit in tests.
* For tests with large constants, decreases issues with lit pipelines.
* Bumps llvm-project to pick up the update.
2020-10-22 13:04:24 -07:00
Stella Laurenzo 58adb6bd8e Work around various PyTorch issues in support of convolution.
* Enables the conv2d fwd test and ResA (which are both small).
* Deletes resnet18 and vgg, which both run but generate output that crashes FileCheck and lit (or at least makes them take an eternity).
2020-10-21 12:44:31 -07:00
Stella Laurenzo 029815152e Add remaining pieces to capture full example models.
* Adds Basicpy List, Tuple, Dict types and plumbs through C API.
* Started debugging the issues around aten::conv2d capture, but a PyTorch bug is suspected.
* Was able to manually verify that the basic conv2d forward test captures correctly with a workaround.
* Need to resolve some printing issues upstream and move these tests to an integration test target (they take ~seconds to run).
2020-10-19 22:16:59 -07:00
Stella Laurenzo 9e52f6235b More progress on PyTorch acap device capture.
* Now gets far enough to capture batch_norm.
* Has some issues still with in-place ops.
* Can materialize constants.
* Includes an upgrade to PyTorch nightly, which has important bug fixes for fallback and boxed kernel dispatch.
* Fixes #78, #79, #80.
* Will do more testing in a follow-up once further bugs are fixed that facilitate getting at the other features.
2020-10-15 21:43:21 -07:00
Stella Laurenzo abb6fe8aa2 Port prior acap export tests to new dispatcher based versions.
* Sadly, non-trivial ones fail.
* Bugs filed and marked XFAIL.
2020-10-13 16:37:46 -07:00