This adds the `generate-runtime-verification` pass into the linalg
refbackend, and moves all tests that now abort at runtime into the crash
set, sorted by their respective errors.
I have fixed on set of errors found that way, which are mismatches
between the static dimensions we cast to and the actual dynamic
dimensions. This was caused by wrong annotations on the test cases, like
in
https://github.com/llvm/torch-mlir/pull/3615/files#diff-48bfbf41fcad5fa01b49197d251114f84a2b8de4f1d87ab938a061aedd1419b1R1931
This bump triggered an upstream assert. Includes a WAR for #3506.
Also includes several things I needed to do to repro:
* When TORCH_MLIR_TEST_CONCURRENCY=1, test runs will be printed.
* Added TORCH_MLIR_TEST_VERBOSE=1 handling to enable verbose mode
(useful on CI).
---------
Co-authored-by: Stella Laurenzo <stellaraccident@gmail.com>
This is a large change because prior to this point, Python files in the
project were not consistently formatted. This reformats them all with
black defaults.
Based on experience with prior projects, if you have a dev/long-term
branch with Python patches, you can minimize merge conflicts prior to
rebasing to include this commit by running `black` on your modified
Python files, squashing, and then rebasing/merging.
We can map to `tensor.reshape` for handling multiple output dynamic
shapes. Later we can perform a more complex analysis for indentifying
expand/collapse cases from the tensor.reshape.
Initially we planned to handle this identification at the `torch` level
however it will be easier to handle once converted to core
mlir-dialects.
We can route the torch tests via `onnx` using the `torch.onnx.export`
tooling. We can then reimport, lower to torch, and compile to linalg to
validate the onnx path is working correctly.
The current implementation exposes some failures in the `onnx` path so
we cannot enable the onnx test suite yet due to segmentation faults.
This is a first step towards the structure we discussed here:
https://gist.github.com/stellaraccident/931b068aaf7fa56f34069426740ebf20
There are two primary goals:
1. Separate the core project (C++ dialects and conversions) from the
hard PyTorch dependencies. We move all such things into projects/pt1 as
a starting point since they are presently entangled with PT1-era APIs.
Additional work can be done to disentangle components from that
(specifically LTC is identified as likely ultimately living in a
`projects/ltc`).
2. Create space for native PyTorch2 Dynamo-based infra to be upstreamed
without needing to co-exist with the original TorchScript path.
Very little changes in this path with respect to build layering or
options. These can be updated in a followup without commingling
directory structure changes.
This also takes steps toward a couple of other layering enhancements:
* Removes the llvm-external-projects/torch-mlir-dialects sub-project,
collapsing it into the main tree.
* Audits and fixes up the core C++ build to account for issues found
while moving things. This is just an opportunistic pass through but
roughly ~halves the number of build actions for the project from the
high 4000's to the low 2000's.
It deviates from the discussed plan by having a `projects/` tree instead
of `compat/`. As I was thinking about it, this will better accommodate
the follow-on code movement.
Once things are roughly in place and the CI passing, followups will
focus on more in-situ fixes and cleanups.