Commit Graph

14 Commits (db282fd1b4be05baf394e0d6935f7b94be545162)

Author SHA1 Message Date
Sean Silva db282fd1b4 Introduce native `!torch.none` type.
- Add `torch.constant.none` op to construct it (naming is chosen to be
  analogous to Torch's representation of a prim::Constant with
  NoneType, rather than using the "singleton" terminology of Basicpy).
2021-06-14 13:30:58 -07:00
Yi Zhang e0ff5248fb Add TorchList type and prim::ListConstruct #218 2021-06-10 14:31:35 -07:00
Sean Silva 370e3270ab Introduce `!torch.tensor` / `!torch.vtensor` types.
This removes our reliance on the numpy dialect and avoids our off-label
use of the builtin tnesor type for modeling unknown dtypes.  The
`!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor.
The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic
tensor. The new types look as follows syntactically:

```
// Least-static-information, non-value-semantic tensor.
!torch.tensor
// Explicit form of least-static-information variant.
!torch.tensor<*,unk>
// Least-static-information, value-semantic tensor.
!torch.vtensor
// Explicit form of least-static-information variant.
!torch.vtensor<*,unk>
// Fixed-set of allowable element types, with first-class support for
// Torch's frontend signedness semantics.
!torch.tensor<*,si32>
// First-class support for unknown dtypes.
!torch.tensor<[?,?,?],unk>
// Standard MLIR representation of `?` for unknown dimensions.
!torch.tensor<[?,2,?,4],unk>
// Statically shaped / dtyped example.
!torch.vtensor<[1,2,3,4],f32>
```

This required fairly significant changes throughout the compiler, but
overall it is a big cleanup. We now have a much clearer layering of "the
Torch frontend lowering" vs "lowering to std + linalg + etc.".

At the C++ level, there is `ValueTensorType`, `NonValueTensorType`.
We also have a helper `BaseTensorType` (kind of like ShapedType) which
interoperates with those two.

Included changes:
- New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for
  creating torch tensor literals in the frontend.
- Consistently use signedness for the types (except i1 which I didn't
  touch -- we need to sort out the situation with !basicpy.BoolType
  there anyway so will be attending to that soon)
- Frontend can annotate whether an argument to the function has value
  semantics. We currently require this, as our backend contract does not
  currently allow us to even model the non-value-semantic case. Before,
  the value-semantic assumption was randomly injected in the middle of
  the pass pipeline.
- Move ArrayToTensor (now called MaximizeValueSemantics) and
  RefinePublicReturn passes to torch dialect.
- The TorchToStd and TorchToLinalg passes are now type conversions from
  `!torch.vtensor` to `tensor` and use the dialect conversion infra.
  The overall conversion pipeline is set up following the best practices
  of the "Type Conversions the Not-So-Hard Way" talk. This required
  introducing `torch-func-builtin-tensorize` and
  `torch-finalizing-builtin-tensorize` passes analogous to the upstream
  bufferization passes with the corresponding names (mostly just
  copypasta from there).
- Misc Torch-level canonicalizations -- we now cleanly layer the
  lowering to std later in the pipeline, so we are gradually lessening
  our reliance on random std constant folding before we get to that
  point.

Recommended review order:
- New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp
- New ops in TorchOps.td / TorchOps.cpp
- Less important / more mechanical stuff
  - Frontend changes.
  - Pass changes/additions in `Torch/Transforms` and `Conversion/`
2021-06-10 10:56:48 -07:00
Sean Silva 2efda323ff Significantly restructure torch/aten import design.
This is a really major and invasive restructuring of the way we get
torch operators (`torch::jit::Operator` / `c10::OperatorHandle`) into
MLIR. Please forgive the challenging review, but due to the sheer
invasiveness, it wasn't really practical do do it in sane smaller
pieces.

This fully replaces everything that was already working on the
TorchScript path (actually, more -- we added tanh support to
TorchToLinalg in order to delete the older code paths). Additionally,
I've kept the lights on for the acap path too, including what little e2e
stuff was working before (for expediency I made a few tiny compromises
along the way that will be easy to undo when we give that path proper
attention).

Overview of the new design:
- The torch operator `somens::someunqualname.someoverloadname` is
  imported as `torch.somens.someunqualname.someoverloadname` (skip the
  last dotted part if the overload name is empty), OR, if we don't have
  such an op registered, it is imported as
  `torch.operator "somens.someunqualname.someoverloadname" (...) : ...`.
  - The addition of the "overload name" is a critical element here, as
    the `(ns,unqual,overload)` triple is unique, which solves a lot of
    problems we were having.
  - This involves having separate MLIR ops for the `trailing_` and
    `.out` variants and all the different overloads. This seemed
    necessary, because the set of overloads is so wild and varied and
    unstructured. The previous design was leaning into some underlying
    structure that just isn't there -- the default situation is
    the "random overload that we want to manage on the MLIR side",
    rather than that being an exception. E.g.  `aten::ne` (not-equal)
    has 21 overloads, only 4 of which are c10 dispatcher ops see
    [gist](https://gist.github.com/silvasean/190ba918c550c956260e21254e1b8aa1),
    and the "out" variant is really called `.Tensor_out` instead of
    `.out` as it frequently is for other ops.
  - Rationale for all being in `torch` namespace: the set of operators
    are so varied and unstructured that "dialect per namespace"
    doesn't result in anything resembling the typical MLIR dialect
    boundary expectations. We could maybe draw the boundary at
    dispatcher ops vs non-dispatcher ops, but that doesn't seem to
    really result in very much useful structure at this point in time.
  - Note: within the torch operator registry, we effectively have a
    mini-basicpy subdialect (already type-resolved), which is reasonably
    structured.
  - The existing Torch op interfaces are also removed -- now that we
    track the overload name, we can losslessly find the original
    operator.
- Instead of `ATenRecognizeKernelsPass`, we now have a
  `ReduceOpVariantsPass` that keys off certain traits (and perhaps
  eventually interfaces) to reduce variants of ops to a smaller set,
  ideally operating on immutable tensors and using surrounding ops to
  model the mutability/aliasing aspects.
  - Note: `torch.ns.unqual.overload` ops allow both immutable and
    mutable tensors (unlike the previous hard distinction in the common
    case). This is a premonition for a future change that will introduce a
    bona fide `!torch.tensor` type that will clean up a bunch of stuff.
- `TorchToLinalg` / `TorchToStd` supercede the existing
  "ATen->TCF->TCP->Linalg" path.
- The new `torch_ods_gen.py` supercedes `torch_signature_ods_gen.py`.
  It should look somewhat familiar, but the benefit of hindsight has
  allowed a lot of simplifications.

The overall trend seems to be to make the `torch` dialect a nice layer
independent of anything else. It feels like as a natural result of
various future changes we will be removing the reliance on basicpy+numpy
dialects and have a nice self-contained type system too that properly
models the TorchScript type system (including proper subtyping,
mutable/immutable tensors, optional dtype, etc.).

Recommended review order:
- Start at some of the new import IR, e.g. in
  `frontends/pytorch/test/node_import/prim.py`,
  `frontends/pytorch/test/acap_export/test_export_add3.py`, and other
  tests.
- `frontends/pytorch/python/torch_mlir_utils/codegen/torch_ods_gen.py`
  and associated generated files:
  - `include/npcomp/Dialect/Torch/IR/GeneratedAtenOps.td`
  - `include/npcomp/Dialect/Torch/IR/GeneratedPrimOps.td`
- Inspect `ReduceOpVariants.cpp` / `reduce-op-variants.mlir` and the new
  traits in `include/npcomp/Dialect/Torch/IR/TorchTraits.h`
- Various code changes in the import path in
  `frontends/pytorch/csrc/builder`. Probably most interesting is the new
  code in `torch_to_mlir_utils.cpp` that has the logic to create the
  `torch.operator` ops or `torch.ns.unqual.overload` ops.

This is the [new ResNet IR](https://gist.github.com/silvasean/5407aafb710d07612b7b5b92eabecebe),
just to be able to look at a substantial sample of IR in the new style.
2021-05-19 13:37:39 -07:00
Sean Silva a53ed850bd Fix signature of unboxed aten::arange for torch HEAD 2021-03-18 17:53:52 -07:00
Bairen Yi fead0312f1 Revert "Also fallback autograd dispatch keys for torchvision::nms"
This reverts commit 30a42dea32.
2021-03-16 19:37:45 -07:00
Bairen Yi 30a42dea32 Also fallback autograd dispatch keys for torchvision::nms
Signed-off-by: Bairen Yi <yibairen.byron@bytedance.com>
2021-03-15 17:58:08 -07:00
Stanley Winata a38b7b72b2 adapt acap_dispatch to latest pytorch nightly ("1.9.0.dev20210215+cpu")
Modify ACAP_Dispatch to work with latest pytorch
-Remove boxed from convolution's m.impl
-Use redispatch and constrainted keyset to replace deprecated
callwithdispatchkey
2021-02-18 11:13:29 -08:00
Sean Silva 689b40c7a6 Add initial TorchScript module importer
It turns out that this was easiest to structure as a general IValue
importer, since torch module are just one of the possible IValue's.

We import the IValue object graph in a braindead fashion into basicpy
ops and a new `torch.nn_module` op that is used to model the
attributes/methods of a torch::jit::Module IValue. See `Torch/ops.mlir`
for an example, and also check out the .py import tests in
`frontends/pytorch/test/module_import`.

As part of this change, a few housekeeping tasks:
- extract some helpers from graph_importer.cpp
- more helpers around the C API
- misc touchups
2021-01-28 11:55:17 -08:00
Stella Laurenzo f6d7ee06ef Make torch_mlir compatible with binary PyTorch installations.
* This has been anticipated for a long time in that it is quite hard to keep C++ binary compatibility across a system landscape as diverse as PyTorch, LLVM, and this project. This is why we based the PyTorch extension on the MLIR and NPCOMP C APIs only: that is the only sane linkage story for the entire matrix.
* Removes the few LLVM'isms in torch_mlir that had snuck in, using either STL or PyTorch support utilities. The new rule here is that LLVM C++ includes are forbidden at this level and (as stated in the design), torch_mlir should use the PyTorch runtime and support libraries (not introduce an incidental C++ dependency on LLVM).
* Also deletes mnist-playground as it was proving impossible to keep the grid of PyTorch vs system ABI divisions functioning. I am open to a less drastic course here (optional/disabled by default?)
* This gets us pretty close to just using PyTorch's extension builder API, which will be nice for distribution (i.e. it integrates well with the PyTorch ecosystem for deployment). I ended up just simplifying the in-tree CMake support for now.
* Fixes #138
2020-12-14 09:51:00 -08:00
Sean Silva b2077738ca Bump llvm-project to 444822d77a7fea28aa49edf24533c987efa1b2ee
Fixes:
- renames StandardTypes -> BuiltinTypes
- std.extract_element -> tensor.extract
2020-12-11 14:43:38 -08:00
Stella Laurenzo b0623b7793 Bump LLVM version to 4f5355ee73626f8b8fe6bf0dd6d167fea7628a2c.
* Incorporates changes around LLVM StringRef.
* Ports fix in upstream pybind11 detection.
* Disables CI hack due to broken pybind detection.
2020-11-24 13:12:04 -08:00
Stella Laurenzo 78a3c90758 Add TorchScript graph importer.
* Does not handle all features yet but should conservatively fail on unsupported things.
* Location tracking is still somewhat mismatched between what TorchScript and MLIR do. Likely need a better heuristic for tracking locations from defs for nodes that do not carry location.
* Sets the ground-work for a specialized/generic split but only implements the generic side.
* Had some evidence that this requires a recent bump of PT nightly (within the last month) to pick up pybind11 2.6, which includes some cross-module symbol fixes (vs the previously sync'd version). No source changes, but older versions fail to cast function types at runtime.
2020-11-23 14:20:09 -08:00
Stella Laurenzo 47ac80491c Delete old PyTorch 1.3 type dispatch oriented code paths.
* We aren't quite at e2e parity, but we aren't going back and the old path is bit-rotted.
2020-11-12 22:27:05 -08:00