-- In Python we have the concept of negative dimension indexing.
-- We would want to normalize such dimensions to be +ve and within the
expected range instead.
-- This commit takes care of a few remaining set of Ops and their
lowerings by applying `toPositiveDim` and `isValidDim` to the
extracted integer `dim` value.
Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
-- This commit adds e2e support for atend.sort op.
-- 1. Adds aten.sort op in torch dialect.
-- 2. Adds tm_tensor.sort op in TMTensor dialect.
-- 3. Adds lowering of aten.sort -> tm_tensor.sort.
Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
-- This commit adds e2e support for aten.randint by decomposing it into
an aten.randint.low by setting low=0.
Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
This commits adds the support for cases for index_put_op:
1.) where index is a 2-d tensor.
2.) where indices is a list of tensors and none, with exactly
2 non none tensors along the consecutive dimensions.
This commit also adds a utility to compute the broadcast shape
given the two input tensors.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
This commit also adds the support for non-unit output padding in the
case of transposed convolution.
Signed-Off By: Vivek Khandelwal<vivek@nod-labs.com>
This commit adds the ability to specify extra abstract interpretation
functions in `torch_mlir.compile` to use during type refinement. This
allows users to easily add custom ops without having to interact with
MLIR or C++ directly.
The ops `aten.convolution_overrideable` and
`aten.convolution_backward_overrideable` are currently not e2e tested
in Torch-MLIR. Moreover, there is no way to add e2e tests for them
because the ops cannot be called using the CPU backend (this also
prevents adding tested dtype functions for these ops). Since these two
ops are not expected to ever appear in PyTorch traces obtained through
standard means (https://github.com/pytorch/pytorch/issues/97481),
Torch-MLIR should not have to worry about them.
There are several ops that have their shape function upstream and had
not been updated in Torch-MLIR to use the upstream version. This
commit updates those shape function. In addition, TODOs have been
added for shape functions that should be upstream but are not.
The original design for the dtype functions outlined in
https://github.com/llvm/torch-mlir/issues/1462 was unable to properly
handle ops that take optional tensors as an input when the optional
tensor has a value of None. By the time the op gets imported into
torch-mlir, if an optional value is None, all information about the
original type is lost from the op type signature, preventing
torch-mlir from knowing if a value of None was from an optional tensor
or not, which was crucial in the original design since each tensor
argument must be turned into two separate arguments for the dtype
function.
This commit changes the interface to dtype functions such that each
tensor turns into a tuple of two ints, the first representing the rank
of the tensor and the second the dtype of the tensor. Since now there
is a one-to-one correspondence between the operands of an op and the
operands of its dtype function, there is no ambiguity about which
operand of the op corresponds with which operand of the dtype
function.
To test the implementation, this commit defines dtype function for
convolution op, which takes one optional tensor as an argument.
* implemented ceil_mode== true support for lowering aten.max_pool2d to tosa
* add e2e test for lowering aten.max_pool2d to tosa with ceil_mode=true
---------
Co-authored-by: Lisa Liu <lingl@xilinx.com>
The current implementation of `getScalarValue` does not check that the
input to a `ValueTensorLiteralOp` is an i64 before extracting the
value, and it does not check that the result type of the
`PrimNumToTensorScalarOp` is also an i64. This leads to crashes or
invalid IR generated when the `input` is something other than an i64
tensor or `!torch.int`.
This commit addresses those issues. In addition, the function
`getScalarValue` is renamed to `getScalarIntValue` to make it clear
that it *only* extracts scalar integers.
Set PyTorch and TorchVision version to nightly release 2023-02-27.
This commit also adds the lowering for aten.add and aten.Float.Scalar op.
Signed-Off By: Vivek Khandelwal <vivek@nod-labs.com>
Random tensors used in e2e tests should be created using the
`TestUtils` object passed to the registered test case to ensure that
the compiled module and the golden trace receive the same tensors as
input. This commit changes all the cases of `torch.rand` and
`torch.randn` to use the `TestUtils` instead.
This patch replaces all MHLO operations with their StableHLO
counterparts and adds a validation pass to ensure that no MHLO operations
remain before translating all Stablehlo operations to the MHLO dialect
for further lowering to the Linalg dialect.
This patch also updates all lit tests so that they refer to the
`convert-torch-to-stablehlo` pass and so that they check for StableHLO
operations.
Week of 01/30/2023:
Green LLVM commit: e31ee6417c33a6e2f0e8440b1a86d5365279ad68
Green MHLO commit: c2a6f4064d426567b9ef7b0d29d5ab86dc7b2b02 (branch greencommit/2023-01-30-e31ee641)
This commit replaces the `tanh` dtype function, which was being used
to test the implementation of dtype functions in
a710237437, with a dtype function for
`expm1`. The dtype function for `expm1` is identical to the `tanh`
one, so the same level of testing is maintained.
Currently, there are ops getting dtype information from the
`RefineTypes` pass and ops getting dtype information from the
`TorchDtypeRefinementPipeline`. Since each pass can only propagete
dtype information for the ops it knows how to handle, some models with
many ops handled in both passes require the two dtype propagation
passes to execute many times, reaching the iteration limit set in the
`LowerToBackendContractPass`. To temporarily avoid this issue while
the migration to `TorchDtypeRefinementPipeline` is finished, this
commit switches `tanh` to `expm1`, since the latter is used a lot less
in large models.
This reverts commit eaab9be207, since it
is causing the post-merge CI tests to fail, causing subsequent PRs to be
blocked. Specifically, the tests
`ElementwiseAtenLogicalAndOpPromoteBroadcastModule_basic` and
`ElementwiseAtenLogicalXorOpPromoteBroadcastModule_basic` fail because
the oracle does not match the computed result. This patch reverts the
commit to make the post-merge builds green again.
This commit adds support for passing to `torch_mlir.compile` the
result of running `torch.jit.trace` on a model by relaxing the
condition that checks if the model is already in JIT IR to allow any
`torch.jit.ScriptModule`.
Fixes https://github.com/llvm/torch-mlir/issues/1739
-- The dtype of the result of `aten.embedding` should match that of
the `weight` operand's (operand[0]) instead of hardcoding to f32.
-- This commit aims to provide a fix for the same.
Signed-off-by: Abhishek Varma <abhishek@nod-labs.com>
pytorch/pytorch@140a3139 reverted a change from yesterday, causing the
RollPyTorch action to break. This patch reverts the corresponding
change in the torch-mlir LTC code.
This patch also re-enables tests that were previously marked as XFAIL.
As [@ezyang suggested](https://github.com/pytorch/pytorch/issues/90276#issuecomment-1339791275),
use `torch._dynamo.optimizations.training.aot_autograd` instead of raw
`make_fx`. This is more future proof and gives us the backward pass and
functionalization. We don't currently get functionalization because of
https://github.com/pytorch/pytorch/issues/90759
This also incidentally fixes the source location handling, which makes
`lockstep_basic.py` give an accurate source location!
* [custom op] Generalize shape library logic to work with dtypes
This commit generalizes the shape library logic, so that dtype rules
for ops can also be expressed using the same mechanism. In other
words, each op can now have a shape function and a dtype function
specified in Python that is imported during lowering to calculate the
shapes and dtypes throught a program. For more information about how
to specify a dtype function, see the updated
`docs/adding_a_shape_and_dtype_function.md`.
For those not familiar with how the shape library works, the file
`docs/calculations_lib.md` provides an overview.
This was an experimental attempt at rolling out own op-by-op executor
with `__torch_dispatch__`, but it proved difficult to make it robust.
Op-by-op execution is very easy to implement robustly now with the
PyTorch 2.0 stack, so we don't need eager_mode.
Downstream users were using eager_mode to implement lockstep numerical
accuracy debuggers. We implemented the same functionality with
TorchDynamo in https://github.com/llvm/torch-mlir/pull/1681 so now there
is not much reason to continue maintaining it.
This gives some decent improvements to memory consumption and latency of
testing. I would have expected buffer-deallocation to actually make a
big difference to the final process RSS but it doesn't appear to. Also
running buffer-deallocation later in the pipeline results in
miscompiles. I didn't have the time or interest to dig in deeper, but
something is off.
(numbers below are taken from a single run, but I did do a few runs to make
sure that the variance wasn't that great)
- Linalg-on-Tensors shows memory consumption improvements and some slight speedups.
```
./tools/e2e_test.sh -s -v -c refbackend
fuse=0 dealloc=0
RSS: 3071.33 MB
real 3m58.204s
user 6m22.299s
sys 0m51.235s
fuse=1 dealloc=0
RSS: 2515.89 MB
real 3m34.797s
user 5m56.902s
sys 0m44.933s
fuse=1 dealloc=post-bufferize:
RSS: 2290.25 MB
real 3m42.242s
user 6m0.560s
sys 0m46.335s
```
- TOSA ResNet18 gets significantly faster and uses significantly less memory.
```
time ./tools/e2e_test.sh -s -v -c tosa -f ResNet18
fuse=0 dealloc=0
rss 1328.56 MB
real 0m50.303s
user 0m55.355s
sys 0m12.260s
fuse=1 dealloc=0
rss 859MB
real 0m30.454s
user 0m35.551s
sys 0m11.879s
fuse=1 dealloc=post-bufferize:
rss 851MB
real 0m30.313s
user 0m39.889s
sys 0m11.941s
```
Big thanks to Ramiro for the methodology here for measuring the RSS with
`psutil`:
https://gist.github.com/ramiro050/5b5c2501f7389c008d9029210772c3a8
- Support for non-prefixed accessors has been removed. See:
https://reviews.llvm.org/D136727
- Rename `operands` to `methodOperands` in `prim.CallMethod` since the
name `operands` overlaps with a builtin method name. See:
https://reviews.llvm.org/D136727
- Add passes in refbackend to lower memref.subview. See:
https://reviews.llvm.org/D136377
- Replace `CopyToValueTensorOps` first in `RewriteViewLikeSubgraph` in
maximize-value-semantics.
The current implementation of the `RewriteViewLikeSubgraph` pass in
maximize-value-semantics creates temporarily invalid IR. In
particular, given a forward slice starting from a
`CopyToNonValueTensorOp` and ending in `CopyToValueTensorOp`s, the
pass first replaces all uses of the `CopyToNonValueTensorOp` with
its operand, which results in all the `CopyToValueTensorOp` users
having their operand have type `!torch.vtensor`, which is invalid.
The correct way to do things is to first replace all the
`CopyToValueTensorOp`s with their operand, and then replace all uses
of the `CopyToNonValueTensorOp` with its operand.
This only started failing now because the generated accessor
`getOperand` for the `CopyToValueTensorOp` now returns a
`TypedValue<NonValueTensorType>`, which has an assert checking that
the value returned is of the expected type.
This is a minor variation on our other resnet18 examples swapping in
TorchDynamo.
We replicate the refbackend_torchdynamo_backend out of the e2e test
config to avoid making that appear like a public API.
Also, some minor cleanups to TorchDynamoTestConfig.
This test has been disabled a long time, and since RefBackend is so slow
we don't want to add this unnecessarily. I believe it is covered by
downstream testing such as the Shark Tank.
Thanks to TorchDynamo's great layering and design, this is only about
100 lines of code for a basic lockstep debugger.
This should allow us to deprecate eager_mode, since AFAIK the only
interesting use case that it was really supporting is for downstream users to
write lockstep debuggers.
NOTE: The exact reporting and interface here is subject to change. Please
try it out and provide feedback (or patches :) ).
- make_fx should not drop source locations: https://github.com/pytorch/pytorch/issues/90276
- Report tensors better (huge tensors should be summarized)
- Maybe don't abort, but just warn?
- Allow customizing atol/rtol.
- How best to print the failing node? And include surrounding graph
context?