This removes our reliance on the numpy dialect and avoids our off-label
use of the builtin tnesor type for modeling unknown dtypes. The
`!torch.vtensor` (`ValueTensorType`) type is a value-semantic tensor.
The `!torch.tensor` (`NonValueTensorType`) type is a non-value-semantic
tensor. The new types look as follows syntactically:
```
// Least-static-information, non-value-semantic tensor.
!torch.tensor
// Explicit form of least-static-information variant.
!torch.tensor<*,unk>
// Least-static-information, value-semantic tensor.
!torch.vtensor
// Explicit form of least-static-information variant.
!torch.vtensor<*,unk>
// Fixed-set of allowable element types, with first-class support for
// Torch's frontend signedness semantics.
!torch.tensor<*,si32>
// First-class support for unknown dtypes.
!torch.tensor<[?,?,?],unk>
// Standard MLIR representation of `?` for unknown dimensions.
!torch.tensor<[?,2,?,4],unk>
// Statically shaped / dtyped example.
!torch.vtensor<[1,2,3,4],f32>
```
This required fairly significant changes throughout the compiler, but
overall it is a big cleanup. We now have a much clearer layering of "the
Torch frontend lowering" vs "lowering to std + linalg + etc.".
At the C++ level, there is `ValueTensorType`, `NonValueTensorType`.
We also have a helper `BaseTensorType` (kind of like ShapedType) which
interoperates with those two.
Included changes:
- New `torch.tensor(dense<0.0> : tensor<5xf32>) : !torch.tensor` op for
creating torch tensor literals in the frontend.
- Consistently use signedness for the types (except i1 which I didn't
touch -- we need to sort out the situation with !basicpy.BoolType
there anyway so will be attending to that soon)
- Frontend can annotate whether an argument to the function has value
semantics. We currently require this, as our backend contract does not
currently allow us to even model the non-value-semantic case. Before,
the value-semantic assumption was randomly injected in the middle of
the pass pipeline.
- Move ArrayToTensor (now called MaximizeValueSemantics) and
RefinePublicReturn passes to torch dialect.
- The TorchToStd and TorchToLinalg passes are now type conversions from
`!torch.vtensor` to `tensor` and use the dialect conversion infra.
The overall conversion pipeline is set up following the best practices
of the "Type Conversions the Not-So-Hard Way" talk. This required
introducing `torch-func-builtin-tensorize` and
`torch-finalizing-builtin-tensorize` passes analogous to the upstream
bufferization passes with the corresponding names (mostly just
copypasta from there).
- Misc Torch-level canonicalizations -- we now cleanly layer the
lowering to std later in the pipeline, so we are gradually lessening
our reliance on random std constant folding before we get to that
point.
Recommended review order:
- New types in TorchTypes.td/TorchTypes.h/TorchDialect.cpp
- New ops in TorchOps.td / TorchOps.cpp
- Less important / more mechanical stuff
- Frontend changes.
- Pass changes/additions in `Torch/Transforms` and `Conversion/`
This is enough to import the program and get it through the compilation
pipeline. It of course fails at the VerifyBackendContract pass since
there is a lot missing, but the final IR for a simple quantized MLP is
looking pretty decent already:
[IR](https://gist.github.com/silvasean/f76bccd76e9b193d396cfb2f9a11f54d)
Main changes:
- Add support for importing torch quantized tensors, including
`torch.per_tensor_affine.create` op and `!torch.qint8` element type.
- Add support for importing `LinearPackedParamsBase` (basically a weight
+ optional bias, but requires `torch.linear_params.create` op +
`!torch.LinearParams` type to model it). This was less painful than I
expected, as it has the necessary methods to opaquely unpack itself. I
factored things so it should be easy to extend to other custom classes
like `ConvPackedParamsBase`.
- Add minimal boilerplate for importing `quantized::*` ops, with
`quantized::linear` being a motivating example.
- Add e2e test with simple quantized MLP (courtesy of @phoenix-meadowlark).
This is somewhat of an abuse of `!numpy.ndarray` / `tensor`, as
really the proper semantics of `!torch.qint8` dtype on a Torch tensor is
"check the quantizer object of the tensor for side data (scale/offset,
possibly per-channel) that defines the full semantics of the tensor". We
don't have any such notion of "side data" for `!numpy.ndarray` /
`tensor`, let alone anything that would have the associated behavior of
keying off the dtype to determine if the side data is present.
This will be fixed by a proper `!torch.tensor` type.
This is a really major and invasive restructuring of the way we get
torch operators (`torch::jit::Operator` / `c10::OperatorHandle`) into
MLIR. Please forgive the challenging review, but due to the sheer
invasiveness, it wasn't really practical do do it in sane smaller
pieces.
This fully replaces everything that was already working on the
TorchScript path (actually, more -- we added tanh support to
TorchToLinalg in order to delete the older code paths). Additionally,
I've kept the lights on for the acap path too, including what little e2e
stuff was working before (for expediency I made a few tiny compromises
along the way that will be easy to undo when we give that path proper
attention).
Overview of the new design:
- The torch operator `somens::someunqualname.someoverloadname` is
imported as `torch.somens.someunqualname.someoverloadname` (skip the
last dotted part if the overload name is empty), OR, if we don't have
such an op registered, it is imported as
`torch.operator "somens.someunqualname.someoverloadname" (...) : ...`.
- The addition of the "overload name" is a critical element here, as
the `(ns,unqual,overload)` triple is unique, which solves a lot of
problems we were having.
- This involves having separate MLIR ops for the `trailing_` and
`.out` variants and all the different overloads. This seemed
necessary, because the set of overloads is so wild and varied and
unstructured. The previous design was leaning into some underlying
structure that just isn't there -- the default situation is
the "random overload that we want to manage on the MLIR side",
rather than that being an exception. E.g. `aten::ne` (not-equal)
has 21 overloads, only 4 of which are c10 dispatcher ops see
[gist](https://gist.github.com/silvasean/190ba918c550c956260e21254e1b8aa1),
and the "out" variant is really called `.Tensor_out` instead of
`.out` as it frequently is for other ops.
- Rationale for all being in `torch` namespace: the set of operators
are so varied and unstructured that "dialect per namespace"
doesn't result in anything resembling the typical MLIR dialect
boundary expectations. We could maybe draw the boundary at
dispatcher ops vs non-dispatcher ops, but that doesn't seem to
really result in very much useful structure at this point in time.
- Note: within the torch operator registry, we effectively have a
mini-basicpy subdialect (already type-resolved), which is reasonably
structured.
- The existing Torch op interfaces are also removed -- now that we
track the overload name, we can losslessly find the original
operator.
- Instead of `ATenRecognizeKernelsPass`, we now have a
`ReduceOpVariantsPass` that keys off certain traits (and perhaps
eventually interfaces) to reduce variants of ops to a smaller set,
ideally operating on immutable tensors and using surrounding ops to
model the mutability/aliasing aspects.
- Note: `torch.ns.unqual.overload` ops allow both immutable and
mutable tensors (unlike the previous hard distinction in the common
case). This is a premonition for a future change that will introduce a
bona fide `!torch.tensor` type that will clean up a bunch of stuff.
- `TorchToLinalg` / `TorchToStd` supercede the existing
"ATen->TCF->TCP->Linalg" path.
- The new `torch_ods_gen.py` supercedes `torch_signature_ods_gen.py`.
It should look somewhat familiar, but the benefit of hindsight has
allowed a lot of simplifications.
The overall trend seems to be to make the `torch` dialect a nice layer
independent of anything else. It feels like as a natural result of
various future changes we will be removing the reliance on basicpy+numpy
dialects and have a nice self-contained type system too that properly
models the TorchScript type system (including proper subtyping,
mutable/immutable tensors, optional dtype, etc.).
Recommended review order:
- Start at some of the new import IR, e.g. in
`frontends/pytorch/test/node_import/prim.py`,
`frontends/pytorch/test/acap_export/test_export_add3.py`, and other
tests.
- `frontends/pytorch/python/torch_mlir_utils/codegen/torch_ods_gen.py`
and associated generated files:
- `include/npcomp/Dialect/Torch/IR/GeneratedAtenOps.td`
- `include/npcomp/Dialect/Torch/IR/GeneratedPrimOps.td`
- Inspect `ReduceOpVariants.cpp` / `reduce-op-variants.mlir` and the new
traits in `include/npcomp/Dialect/Torch/IR/TorchTraits.h`
- Various code changes in the import path in
`frontends/pytorch/csrc/builder`. Probably most interesting is the new
code in `torch_to_mlir_utils.cpp` that has the logic to create the
`torch.operator` ops or `torch.ns.unqual.overload` ops.
This is the [new ResNet IR](https://gist.github.com/silvasean/5407aafb710d07612b7b5b92eabecebe),
just to be able to look at a substantial sample of IR in the new style.
- aten::relu_, aten::max_pool2d, aten::adaptive_avg_pool2d, aten::batch_norm, aten::conv2d
No aten-to-linalg conversion for the latter ones, as they are fairly
substantial. At this point, I'm trying to get shape inference and stuff
working for them and the IR cleaned up.
This trait lets us model the semantics of various aten/torch/numpy ops
that are insensitive to type refinements. This replaces
hardcoded/inconsistent checks for this property.
To show usage of this new trait, we fix up some old uses, and improve
RefineTypes to be smarter about rewriting with this trait.
Interestingly, TorchScript has its own op (`torch::jit::Operator`)
registry separate from the dispatcher (it is a superset of the
dispatcher).
This is where the "prim" ops and some "aten" ops (that should probably
be renamed to "prim") live. In particular, `aten::__is__` is in that
latter category of "aten but really prim". This registry is also the
source of truth for what the TorchScript interpreter calls into when it
executes.
The bulk of the "not part of the dispatcher" ops live in
09feb5f579/torch/csrc/jit/runtime/register_prim_ops.cpp (L82)
And the registry itself lives in:
09feb5f579/torch/csrc/jit/runtime/operator.cpp (L196)
This fold further reduces the IR of ResNet by folding away some
more not-taken branches. These not-taken branches in ResNet require
first-class handling of the list type which we don't yet have on any
backend.
This is the start of a push to getting ResNet running.
This involves throwing in the towel on an O0 pipelinie for now. See note
in the code. We keep an options struct with `optimize` flag, but it
default to true for now.
This removes the need for defining all of the custom propagation logic,
and also adds support for propagating value knowledge across branches,
through regions, and across calls.
These tests pass on the reference backend.
- Add aten.linear op + shape xfer function + ATen->Linalg lowering.
- Note: this needs to be more automated, and needs to cover more cases.
- Current not implemented caveats:
- size-1 broadcasting for bias vector (either static-size-1 or ? case)
- higher-rank aten.linear ops (not produced by torch.nn.Linear though)
- type promotion (still don't even know the exact rules here)
- Add folder for torch.derefine op. Now the inliner can clean it up as
it inlines. (call boundaries are a main place we need to insert
torch.derefine) This is brittle -- the other important case is control
flow which will need to be handled via an extension to
RefineTypes.cpp (as will more robust call handling). River has an
in-flight patch to update it to the new dataflow framework so I didn't
want to do anything intrusive here.
- Also adjust torch.derefine syntax to use the keyword `to` instead of
`->`, as most type-only, cast-like ops do.
This inlines global slots if possible. This allows them to participate
in folding, canonicalization, shape inference, etc.
Example use cases:
- inlining weights and biases that are readonly during inference
- inlining the "training" bool to allow stuff to fold away
For training use cases (especially internal training loop), we will need
something smarter to get good performance. That would look like an "SSA
formation" which promotes the global slots to tensors in the program,
flushing them back to the slots at the minimal number of necessary
places. We might want to let backends do that transformation though.
This also interacts with shape inference (type bounds on the slots to
even lower them to backends in the first place).
This is our first op with error semantics, and stresses the system.
There are a few design notes of special interest:
- RefineTypes.cpp's note about shape inference in the presence of code
that dynamically produces and error, and it is provable statically.
- ATenToLinalg.cpp's notes about future automation of the ATen->linalg
path.
- The notes in Passes.td about using low-tech `std.assert` ops instead
of `shape.assuming`.
Note: Doesn't work on IREE yet due to the `std.assert` op (needs to be
lowered to `vm.fail` on the IREE side).
This pass allows shape information to be propagated to return types,
which is nontrivial and cannot be cleanly put anywhere else as it
changes the public ABI, which is a concern that we want to keep
concentrated in one place.
Currently implemented as a simple intraprocedural dataflow analysis over
a standard ShapedType lattice (hasRank, sizes, and elementType).
It currently hardcodes a few key pieces of information:
- shape transfer functions
- whether it is legal to update the operand type of an op
This needs to be made pluggable obviously and the core propagation logic
moved somewhere agnostic.
The current implementation is just sufficient to do a unary aten.tanh
from the e2e spike, and just applies some local rewrite patterns. I've
sketched out the more full explanation of where this pass eventually
need to go in the pass docs.
Adding this required adding `numpy.tensor_static_info_cast`, which is
the tensor analog of `numpy.static_info_cast`. This op encapsulates the
same numpy-specific "no runtime code" casting semantics, in particular
the interpretation of `!numpy.any_dtype`. The
`numpy.tensor_static_info_cast` I see in practice now are "information
erasing" and will be removed by a later pass that exploits the fact that
aten ops are agnostic to the static info in the operand types (so
substituting a type with more static info is fine).
Side note: we *need* to do dtype and rank inference before aten->tcf
(which will eventually mostly be aten->linalg+guards), because each aten
op is idiosyncratically overloaded based on dtype and rank. Without
copying that idiosyncratic overloading into lower layers (layering
violation), we cannot really lower it to anything until we do that.
This pass incorporates torch.type_bound info and also removes NoneType
returns (eventually it will rewrite tuple types too, but can't yet
because !basicpy.TupleType doesn't track element types).
Recommend looking at adjust-calling-conventions.mlir first to see what
it is doing, and holding your nose for the implementation of the pass.
I decided to implement this with the conversion framework, because it
gives us *some* goodies for type conversion -- mainly avoiding large
amounts of tricky RAUW dances. Unfortunately, the conversion framework
isn't a perfect fit for a couple reasons:
- the incorporation of torch.type_bound is a context-sensitive rewrite
(requires looking at the arg attr, not just the type).
- NoneType conversion is 1->0, which requires some special handling
- (not implemented yet) 1->N tuple type conversions require special
handling.
It's a little bit scary, but on balance doing it the other way would
have its own downsides.
These allow users to annotate a known "type bound" on the argument,
which can seed shape/dtype inference. We don't rewrite the function
types as part of the import process (it will happen in a
yet-to-be-written pass) because:
1. We would need to interprocedurally rewrite all calls to keep the IR
consistent. Currently, we have a place after GlobalizeObjectGraph but
before we convert to tensors where this is convenient to do. Ideally,
we would do this on the object graph representation.
1. We don't necessarily know that adjusting the function type is a legal
calling convention change. The pass will have blessed knowledge (by
the pass pipeline author) that adjusting the argument type based on
the type bound is safe (which it frequently is).
2. Note that in principle, a type bound could be a fairly general thing
(such as maximum sizes of dimensions, unions of multiple concrete
types, etc.). The pass will in principle have logic to interpret the
type bounds and to determine a suitable "best" (and legal) argument
type.
- renames of OwningRewritePatternList -> RewritePatternSet
- also `insert` to `add`
- RewritePatternSet holds a context now
- memref dialect split from std
* Adds f32 scalar argument support across the ABI boundary.
* Adds support for passing input type / shape information
across the ABI boundary
* Adds support for parsing / creating input FloatAttr's in
`npcomp-run-mlir`
We already had the `promoteTrailingOutTensor` flag, but weren't using
it. A inplaceVariantKernelName flag needed to be added.
This change is a little dissatisfying, as the conversions done by the
RecognizeKernelsPass are currently non-orthogonal. In particular,
`kDropResultAndAliasArg0` probably won't work as intended if mixed with
these (we probably need to promote kDropResultAndAliasArg0 to not be an
arg-level thing anyway, as we have done with promoteTrailingOutTensor).
This involved adding a new op `numpy.overwrite_array`.
```
numpy.overwrite_array %arg2 overwrites %arg0 : tensor<2x3xf32>, !numpy.ndarray<[2,3]:f32>
```
This models the destructive update behavior. Note that in the above op,
we cannot simply RAUW %arg0 with a suitably conveted %arg2 (for example,
%arg0 might have uses that are not dominated by %arg2, or might have an
alias relation with some other array in the program). In general, we
need a pass analogous to "SSA-formation" which knows how to see through
these to uncover an underlying tensor program.
Also, add tanh_out_e2e.py/div_inplace_e2e.py and fix some bitrot in
refjit.py which is my running example I'm trying to get working.
* Import ATen conv2d conversion and test
This is a first attempt at expanding ATen-to-TCF conversion for the
conv2d operator. Eventually, this will come in use when lowering a
high-level conv-based model.
This happens in practice with e.g. ResNet from torchvision (multiple
instances of the same BatchNorm class).
The key observation is that for this program, and the expected set of
programs, we can convert the program to the same globalized form with a
bit more static analysis and effort to suitably monomorphize the
program. Though what we are doing here is fairly annoying to implement,
it saves any nontrivial later pass from having to do similar analyses
(or worse). E.g. shape inference would need to be object-graph aware,
mutation/lifetime analyses would have to be aware, etc. Additionally, it
would make us front-load what it means to have a !torch.nn.Module type
on an ABI boundary, which we are just not ready to handle.
I'm really, really hoping that in practice we can get away with
this, otherwise it's going to be really rough designing a representation
(and implementing everything to back it) that is convenient to transform
and gracefully scales from full object graph (in the most dynamic case)
down to a fixed set of global slots like we have here (in the most
static case, which we presume a lot of practical programs fall into).
This also involved introducing a
`torch-prepare-for-globalize-object-graph` pass that does a minimal set of
lowerings to simplify the IR into a more orthogonal and analyzable form,
and a `torch-globalize-pipeline` helper.
Recommended review order:
- updated documentation in Passes.td
- new tests in `globalize-object-graph-multiple-instances*.mlir`
- implementation of GlobalizeObjectGraph.cpp
- PrepareForGlobalizeObjectGraph.cpp + prepare-for-globalize-object-graph.mlir
- misc stuff like torch-globalize-pipeline pipeline definition.
With this, we can import, globalize, and inline resnet18 from
torchvision:
https://gist.github.com/silvasean/821586afc19b67d9fb72030b2e0adeb8
This primarily unlocks proper handling of free functions (that is,
functions that are not methods of any torch.nn.Module).
Recommended review order:
- `ivalue_importer.cpp` + `ivalue_import/functions*.py`
- `GlobalizeObjectGraph.cpp` + test case
- misc other stuff
The `torch::jit::CompilationUnit` is basically a backing store or
"context" holding all the possible functions in the program. The
previous code was not explicitly accessing this data structure, since it
just imported the `torch::jit::Function`'s that it saw attached to
methods.
Subtly, any time a TorchScript module called into a free function, the
free function gets incorporated into the torch::jit::CompilationUnit,
but doesn't show up anywhere when dumping the module, except in the
curious pattern:
```
%5 : Function = prim::Constant[name="adaptive_avg_pool2d"]()
%6 : Tensor = prim::CallFunction(%5, %input.1, %4)
```
That is, calls are indirect calls, and are accessed via `prim::Constant`
materializing a function object. Even stranger, the `name` attribute here
doesn't really even tell the full story -- it doesn't correspond to
anything. It turns out that the c10::FunctionType itself actually holds
a pointer to the `torch::jit::Function` in the compilation unit
directly (so there is actually no indirection in prim::CallMethod,
because any two values of the same FunctionType call the same
function!). E.g. when converting the IR to bytecode, the "name" is
ignored [code link](1d6bd15790/torch/csrc/jit/runtime/interpreter.cpp (L937)).
We do import `prim::CallFunction` as a `std.call_indirect` though
because it's more braindead to do it that way (it gets canonicalized to
a direct call easily).
This is a much simpler representation than the ad-hoc initializer
function we had before. It is also less general, but given the rationale
in Passes.td it seems like the right tradeoff right now.
We can probably carry this representation for quite a while, and when we
can't, it likely means that TorchScript has fixed their object identity
bug and we probably need to just upgrade to a more general object graph
modeling (more general than GlobalizeObjectGraph).
In particular, we don't want to deal with defining and carrying around
this initializer function concept until we need it. For example, if we
want to constant-fold the global slots into uses, this is a much better
representation, and it plays better with symbol-dce (the initializer
function counts as a "use" of the symbol).
(the alternative would have been to write a pass that converts the
initializer function to this form when possible, but I realized that
lots of information had been lost which made that fairly annoying -- it
was all self-inflicted anyway, so best to just go to the source
(GlobalizeObjectGraph) before the information is lost)
Now symbol-dce works nicely (no more "training" bools)
```
pt_util ~/tmp/classifier.pt --import --exported-name forward \
| npcomp-opt -torch-globalize-object-graph -inline -symbol-dce
```
IR: https://gist.github.com/silvasean/8abe63d70d24e29d6db9170ccc8d512b
The first use case is to annotate certain program constructs as either
exported or private. In this commit we plumb it down to
GlobalizeObjectGraph which makes use of this information.
Recommended review order:
1. class_annotator.h/.cpp + `test/module_import/annotations/*`
- New abstractions to communicate with Python code and annotate.
2. IR changes in TorchOps.td
- Adding "private" attribute to various things.
3. ivalue_import.cpp changes
- Module + ClassAnnotator = annotated IR
4. GlobalizeObjectGraph.cpp + tests
- use new "private" attributes to create "private" IR.
- also, tweak some of the op deleting mechanics, which was triggering
some memory errors / assertions
With this, we can run the classifier through and inline it as follows:
```
frontends/pytorch/utils/pt_util.py --import --exported-name forward ~/tmp/classifier.pt \
| npcomp-opt -torch-globalize-object-graph -inline
```
IR: https://gist.github.com/silvasean/32dcad9f6270557f412094a77cecdd69
This required restructuring of how we model TorchScript on import. The
main difference is that now we split out a `torch.class_type` that holds
methods and declarations of the types of each slot. This is more
consistent with TorchScript (our previous representation was
"denormalized").
Recommended reading order:
1. check out the description of `torch.class_type` in `TorchOps.td` and
look at `test/Dialect/Torch/ops.mlir` and
`frontends/pytorch/test/module_import/` to familiarize with the new
representation.
- Just look at the new IR. The diff between the old names and new
names is confusing.
2. check out `test/Dialect/Torch/globalize-object-graph*.mlir`
and read along with the pass description in
`include/npcomp/Dialect/Torch/Transforms/Passes.td`
3. Read the code in `GlobalizeObjectGraph.cpp` and miscellaneous changes
in `ivalue_importer.cpp`, `TorchOps.cpp`, etc.
It turns out that this was easiest to structure as a general IValue
importer, since torch module are just one of the possible IValue's.
We import the IValue object graph in a braindead fashion into basicpy
ops and a new `torch.nn_module` op that is used to model the
attributes/methods of a torch::jit::Module IValue. See `Torch/ops.mlir`
for an example, and also check out the .py import tests in
`frontends/pytorch/test/module_import`.
As part of this change, a few housekeeping tasks:
- extract some helpers from graph_importer.cpp
- more helpers around the C API
- misc touchups
- TensorFromElementsOp -> tensor::FromElementsOp
- `cmpi "eq", ...` -> `cmpi eq, ...`. Same for `cmpf`
- syntax change for private func ops
- some changes to the python bindings
Best as I can tell (e.g. from LeakSanitizer), this fixes all the leaks
except for those due to buffers created internally to the codegenned
code itself (up next I'll add the buffer deallocation pass to fix
those).
The main change is that instead of attempting to pass `refbackrt::Tensor`
to the codegenned function directly, we make all the ABI types be
UnrankedMemRef which gets passed awkwardly (but workably) as a
`{size_t rank, void *ptrToDescriptor}` on the ABI. The reason why
refbackrt::Tensor wasn't workable is that is that MLIR doesn't really
have a way to deal with the lifetime of unranked memref descriptors that
happen inside the function, which is inevitably what would happen in the
old code that would emit runtime calls to
`refbackrt.to_memref/refbackrt.from_memref` to convert back and forth to
`refbackrt::Tensor` inside the codegenned code.
So, instead of the `refbackrt.to_memref/refbackrt.from_memref` with no
real sound basis for valid lifetime management, we now have a lovely
piece of code in `refbackrt::invoke` in `Runtime.cpp` that just barely
seems to be sound. We rely on the codegenned code having these
properties, which it seems to have:
- it won't free memref descriptors or their backing buffer for arguments
of UnrankedMemRef type.
- it will allocate a separate memref descriptor for each result
UnrankedMemRef (which is ensured by having a separate memref_cast for
each)
- we can sniff the `allocatedPtr`'s (i.e. the backing buffer pointers)
to avoid double-freeing in the case of aliasing of the backing buffer
(including backing buffers for arguments feeding into results)
- to catch the case of statically allocated data (which we need to avoid
passing to `free`) , check if the `allocatedPtr` is (no joke) equal to
`0xDEADBEEF`, because there is otherwise no way to distinguish
statically allocated from malloc'ed data... (std.global_memref lowering
to LLVM by happenstance sets the allocatedPtr equal to `0xDEADBEEF`,
presumably mainly as a debugging thing)
Even with all this, we *still* need to (internally to refbackrt::invoke)
make copies of all inputs/outputs! And the details of how the LLVM-level
ABI gets laid out for e.g. function arguments/returns is still super
tricky.
This really highlights how deficient memref is as the general runtime
type for our use case. It's stewing in my mind how best to improve the
situation. My general gut feeling is that IREE's abstractions for this
are "right", but I need to think more how to distill those aspects of
IREE's design in a "reference" way for RefBackend.
Some implementation notes:
- In terms of how this is implemented, this did catch a bug in our ABI
wrapper functions in LowerToLLVM.cpp, which I had to fix (it happened to
work before through some combination of npcomprt::Tensor being passed as
a single pointer + probably me infinite-monkey-ing it until it worked)
- This actually removes 2 out of the 3 compiler runtime functions (the
only one left is "abort_if". (most of the memref descriptor code moved
from CopmilerRuntime.cpp to Runtime.cpp)
- this also means deleting `refbackrt.from_memref` and
`refbackrt.to_memref`
* Going through TODOs on the PyTorch side, this is a big cause of them (not being able to have constants for signed/unsigned).
* Added complex while in here since we're at the phase where it is better to just have things complete than partially done.
This vastly simplifies our code, allowing deleting multiple ops,
simplifying multiple passes, and removing a whole pass.
Now `refback` dialect is down to one op (refback.alloc_memref, which
simplifies allocations to just take a shape instead of individual
extents).
This involved adding a `tcp.splatted` op to splat a dynamically sized
init tensor. See rationale in TCPOps.td docs.
One interesting observation is that when lowering tcf.matmul to
linalg.matmul, we need to both 1) create the error checks and 2)
calculate a shape transfer function to create the init tensors.
Previously, 2) was deferred to bufferizing tcp.matmul later. I'm not
sure if this is a conflation of concerns or not. For now, it's not a big
burden.
* convolution, convolution_backward, _log_softmax, _log_softmax_backward_data, nll_loss_forward, nll_loss_backward, nll_loss2d_forward, nll_loss2d_backward, copy_
* Extends the recognition logic and metadata for handling inplace transformations, optional tensors, ints, lists and dropped args.
* The kernel_calls generated by test_conv_nllloss_grads.py now convert to ATen.
* The result *almost* comes out as a pure tensor program with the exception of the copy_ op, which I will do some followup work to deal with.
* More progress on #97
* Deletes prior code generator from previous attempt (moved some of it into this one).
* Renames old generated tablegen source to "Legacy".
* Generates ODS and import rules for most binary and unary arithmetic ops.
* Removes old generated ops and integration tests that were testing details of the prior setup.
* Two op interfaces, one for querying instance metadata and one for getting static data needed to construct an op from a generic form.
* For torch.generic_kernel ops, metadata is splatted in during capture from Torch (it comes from the op registry, which will work for either device capture or graph import).
* Moved the 'add' out of the generated set so I can experiment on it. It implements the TorchBuildableKernelOpInterface interface which provides its metadata.
* The ATenRecognizeKernelsPass pass generically lowers from a torch.generic_kernel to recognized ops that implement the TorchBuildableKernelOpInterface, handling the various types of transformations that we allow at this stage.
* Adds Basicpy List, Tuple, Dict types and plumbs through C API.
* Started debugging the issues around aten::conv2d capture, but a PyTorch bug is suspected.
* Was able to manually verify that the basic conv2d forward test captures correctly with a workaround.
* Need to resolve some printing issues upstream and move these tests to an integration test target (they take ~seconds to run).
The time has come for BypassShapes/LowerShapedResultsToMemref to go away :(
For the reference backend, being consistent with upstream conventions is
the name of the game now.
This is a step down in a number of ways, e.g. test clarity and
separation of concerns. But it is fewer files and fewer tests, and
*does* address the "TODO: This is really fragile". It also eliminates two
more ops from the refback dialect (sadly, they are the
shaped_results/yield that we were getting kind of fond of, but alas).
Now that it has grown source/target materialization capabilities
(spelled with ops tensor_load/tensor_to_memref), we can use it. We can
also now delete refback.memref_to_tensor/refback.tensor_to_memref.
This is also a first step to reducing the downstream functionality
needed in the refback dialect.