A recent PyTorch commit made ConstantPad2d call a helper function with a
`Union[int, float]` type annotated. This commit adds minimal support for
representing and dealing with that.
https://github.com/pytorch/pytorch/pull/73287
Changes:
- Adding support for `!torch.union<T1, T2, T3>`/`Torch::UnionType`,
along with the importer and CAPI code.
- Add support in isValidSubtype for union types.
- Adding a canonicalizer for `torch.derefine` to help simplify some code
that derefines to a UnionType (this also fixes#664).
There is still more work to do for really supporting UnionType well,
such as canonicalizing UnionType's so that they can be compared with
pointer equality.
This PR include the following pieces:
- Add torch `Generator` type. `Generator` type is converted to i64 in
refbackend type converter.
- Add seed managment support for the default global generator.
`torch_c.getNextSeed` op is used to get the seed. On refbackend, the
`torch_c.getNextSeed` is lowered to load/store from [0] of global
variable `default_generator` memref<i64> in `InsertRngGlobals` pass.
- Add `aten.uniform_` and testing as an example op for RNG ops. Add
`torch.pseudo.aten.uniform` op. It has the same operands and return as
the `aten.uniform_` from the op registry except for value semantics.
This commit (with approval from all contributors) dual licenses
the torch-mlir project under both the standard LLVM license and the
standard PyTorch license. This will facilitate moving code between
torch-mlir and the two upstream projects.
The standard file comment is now:
```
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// Also available under a BSD-style license. See LICENSE.
```
See `LICENSE` in the project root for the terms of both licenses.