This PR adds a conversion in the TorchOnnxToTorch pass for the ONNX
Multinomial operation. It also adds a TorchToLinalg lowering for the
`aten.Multinomial` op and does a light refactor of some repeated code
that generates random floating point numbers in
`TorchToLinalg/Random.cpp`.
This patch adds a few misc pad op related changes:
1. Addresses issue <https://github.com/llvm/torch-mlir/issues/3457>
2. Addresses issue <https://github.com/llvm/torch-mlir/issues/3442>
3. Fixes the padding order for asymmetrically padded onnx.Conv ops
4. Enables passing quantization through those onnx.Conv op pre-paddings
5. Modifies the torch-to-linalg lowering of AtenReplicationPad2d op to
enable support for input rank != 4
Unfortunately, even with all of these changes, the e2e tests for the
ReplicationPad2d still fail the onnx config, since the torch export
procedure for rearranging the pad order is complicated enough that the
padding ints end up not being able to fold back to constants.
Register `aten.fake_quantize_per_channel_affine` and
`aten.fake_quantize_per_tensor_affine.tensor_qparams` ops
---------
Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
Fix the pad tensor rearrangement such that we change the representation
from [x1_begin, x2_begin, ..., x1_end, x2_end,...] to [xn_begin, xn_end,
...., x2_begin, x2_end, x1_begin, x1_end] where x1, x2 .. xn are the
dimensions of the pads tensor argument.
---------
Co-authored-by: zjgarvey <zjgarvey@gmail.com>
Co-authored-by: zjgarvey <47986913+zjgarvey@users.noreply.github.com>
Due to the custom operation parser, the print and parser were expecting
two different forms.
One having the dictionary before the value and the other after.
Following the format of the other constants ops, the constant.int will
follow the `value attr-dict` format. Updated the parser accordingly.
This bump triggered an upstream assert. Includes a WAR for #3506.
Also includes several things I needed to do to repro:
* When TORCH_MLIR_TEST_CONCURRENCY=1, test runs will be printed.
* Added TORCH_MLIR_TEST_VERBOSE=1 handling to enable verbose mode
(useful on CI).
---------
Co-authored-by: Stella Laurenzo <stellaraccident@gmail.com>
Before this PR, a statically shaped aten.convolution would generate
dynamically shaped linalg IR, and even `-canonicalize` would not be able
to fold it back into static shapes. This PR ensure that shape
calculations are folded on construction to directly generate statically
shaped linalg IR.
We achieve that by ensuring that `arith` ops involved in computing
shapes are created via `createOrFold`, so that later uses of
`getAsOpFoldResult` see constants instead of those ops.
For example
```
module {
func.func @forward(%arg0: !torch.vtensor<[32,336,112,112],f32>,
%arg1: !torch.vtensor<[336,168,3,3],f32>,
%arg2: !torch.vtensor<[336],f32>)
-> !torch.vtensor<[32,336,56,56],f32> {
%false = torch.constant.bool false
%int2 = torch.constant.int 2
%int1 = torch.constant.int 1
%0 = torch.prim.ListConstruct %int1, %int1 : (!torch.int, !torch.int) -> !torch.list<int>
%1 = torch.prim.ListConstruct %int2, %int2 : (!torch.int, !torch.int) -> !torch.list<int>
%2 = torch.prim.ListConstruct : () -> !torch.list<int>
%3 = torch.aten.convolution %arg0, %arg1, %arg2, %1, %0, %0, %false, %2, %int2
: !torch.vtensor<[32,336,112,112],f32>, !torch.vtensor<[336,168,3,3],f32>, !torch.vtensor<[336],f32>, !torch.list<int>,
!torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int
-> !torch.vtensor<[32,336,56,56],f32>
return %3 : !torch.vtensor<[32,336,56,56],f32>
}
}
```
would result in
```
[...]
%padded = tensor.pad %2 low[%14, %15, %16, %17] high[%14, %15, %16, %17] {
^bb0(%arg3: index, %arg4: index, %arg5: index, %arg6: index):
tensor.yield %cst : f32
} : tensor<32x336x112x112xf32> to tensor<?x?x?x?xf32>
[...]
%45 = linalg.conv_2d_ngchw_gfchw {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>}
ins(%expanded, %expanded_37 : tensor<?x2x?x?x?xf32>, tensor<2x168x168x3x3xf32>)
outs(%expanded_44 : tensor<32x2x168x?x?xf32>) -> tensor<32x2x168x?x?xf32>
[...]
```
and with this PR all shapes are static.
This adds support for a few ops:
- torch.linalg_det
- torch._linalg_det (if the LU and pivot returns are unused)
- onnx.Det
An scf loop is used, since the row reduction algorithm applied here has
some loop-carried dependencies.
The current support being added here is very basic, and only works if no
permutations are required during row reduction, and assumes the matrices
are non-singular.
This adds a torchvision op to torch-mlir and a path from onnx.DeformConv
to torchvision.deform_conv2d.
I'm not implementing the torch->linalg lowering for the torchvision op
yet, but posting this PR to get feedback on some of the choices being
made here and to flesh out the onnx frontend a bit.
This adds an onnx->torch conversion for onnx.RoiAlign into
torchvision.roi_align or torchvision.roi_pool, and adds those two
torchvision ops to torch-mlir.
Add a new op with shape/dtypes and decompose into
`fake_quantize_per_tensor_affine` when the second result is unused.
The xfail_set change is on ONNX because torch cannot export this op to
ONNX.
1. truncates zero-points to i32
2. modifies the default accumulator type for i8 from i64 to i32.
3. now uses the input dtype to infer accumulator dtype.
This implements the Onnx.NegativeLogLikelihoodLoss op using the
signature provided
[here](https://onnx.ai/onnx/operators/onnx__NegativeLogLikelihoodLoss.html)
by replacing it with a `NLLLossForward` op.
Additionally, I included a helper function `get_loss_reduction_enum` to
convert from a string `reduction` parameter to the corresponding
intended integer value since this is an operation that will be reused
for any loss function module. This differs from `get_reduction_enum` in
`TorchUpstream.cpp` which handles the `reduce` parameter from
`scatter_reduce` type operations.
There is currently no int16 quantization support in torch. This patch
adds a new mlir type to correspond to the missing "torch.qint16" type,
and enables lowering of quantization-related onnx ops using int16 types.
In follow-up patches, custom quantization logic for ops like
aten.matmul/aten.mm/aten.convolution may need to be revisited to allow
support for qint16. The passes in FuseQuantizedOps.cpp may also need
slight modifications.