This commit also cleans up the OnnxToTorch lowering for the Squeeze and
Unsqueeze op and adds the support for handling edge cases.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
Decomposition RepeatInterleaveSelfInt with following ops:
```python
def my_repeat_interleave(input, repeats, dim=None):
if dim is None:
# Flatten the input and then repeat
return input.flatten().unsqueeze(-1).tile((1, repeats)).flatten()
else:
# Calculate the shape after repeat
expanded_shape = list(input.shape)
expanded_shape[dim] *= repeats
# Repeat the tensor along the specified dimension
repeat_shape = [1] * (input.dim() + 1)
repeat_shape[dim + 1] = repeats
input = input.unsqueeze(-1)
# Tile and then reshape
tiled = torch.tile(input, repeat_shape)
# Rearrange and reshape
repeated = tiled.reshape(*expanded_shape)
return repeated
```
I passed the tests of stablehlo and linalg. When testing onnx, strange
things happened.
In torch-mlir's CI **torch_nightly** and my own
environment(torch==2.4.0.dev20240318+cpu), it can **pass the pass**.
In torch-mlir's CI **torch_stable**, it **failed**.
The test case is `RepeatInterleaveSelfIntNoDimModule_basic`, the result
shape should be [120].
```python
class RepeatInterleaveSelfIntNoDimModule(torch.nn.Module):
def __init__(self):
super().__init__()
@export
@annotate_args([
None,
([3, 4, 5], torch.float32, True),
])
def forward(self, x):
return x.repeat_interleave(2)
@register_test_case(module_factory=lambda: RepeatInterleaveSelfIntNoDimModule())
def RepeatInterleaveSelfIntNoDimModule_basic(module, tu: TestUtils):
module.forward(tu.rand(3, 4, 5))
```
The error log is as follows:
```
Unexpected outcome summary: (onnx)
****** Failed tests - 1 tests
FAIL - "RepeatInterleaveSelfIntNoDimModule_basic"
@ trace item #0 - call to "forward"
@ output of call to "forward"
ERROR: shape (torch.Size([6, 4, 5])) is not equal to golden shape (torch.Size([120]))
```
@rsuderman
Would you please help me check what's wrong with my PR? Thanks a lot.
- Added linalg lowering for `AtenFloorDivideScalarOp`
- Needed `AtenDivScalarModeOp` for the decomp.
- Added linalg lowering for `AtenDivScalarModeOp`
- Moved linalg payload logic to `createDivModePayload()` since the logic
was nearly identical for both `AtenDivScalarModeOp` and
`AtenDivTensorModeOp`. Just a template function
- Added `AtenDivScalarModeOp` lowering for stablehlo
Pytorch's
[`torch.floor_divide()`](https://pytorch.org/docs/stable/generated/torch.floor_divide.html)
in a previous version (for a reason unknown to me) preformed a
truncation instead of "floor". The already implemented op
`AtenFloorDivideTensorOp` was done before this change. However, this
wasn't caught because our testcases only tested positive floor division.
I changed this to floor as well as adding a few test cases.
This PR only performs a lit test. In lieu of an e2e test, https://github.com/nod-ai/SHARK-TestSuite/pull/142 makede sure that the lowering works & the numbers check out.
Co-authored-by: Xida Ren <xida.ren.dev@gmail.com>
Shapes can be processed as tensors to represent the set of dimensions.
As reshapes take a list of scalars this can result in a single dynamic
dimension blocking the adjacent static dimensions.
This pass attempts to de-couple tensor computations related to shapes
and propagate values to better support lowering scalar tensor
computations.
When lowering `torch.aten.convolution`, it is expected that the
'transposed' argument is a torch.constant operation. In some cases, the
argument was a `from_i1` operation converting an `arith.constant`
operation into a torch.bool. This is not wrong semantically, but instead
of generalizing the legality of the `torch.aten.convolution` op, we
canonicalize `arith.constant` ops followed by `from_i1` ops to
`torch.bool` ops.
For example:
```
//===-------------------------------------------===//
Legalizing operation : 'torch.aten.convolution'(0x124705b90) {
%33 = "torch.aten.convolution"(%arg0, %20, %21, %31, %29, %30, %19, %32, %0) : (!torch.vtensor<[1,1,28,28],f32>, !torch.vtensor<[10,1,5,5],f32>, !torch.vtensor<[10],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int) -> !torch.vtensor<[1,10,24,24],f32>
* Fold {
} -> FAILURE : unable to fold
* Pattern : 'torch.aten.convolution -> ()' {
** Failure : unimplemented: only constant transposed supported. <-- Resolved by this PR
} -> FAILURE : pattern failed to match
* Pattern : 'torch.aten.convolution -> ()' {
** Failure : not a supported Scalar to Tensor like op
} -> FAILURE : pattern failed to match
* Pattern : 'torch.aten.convolution -> ()' {
** Failure : not a supported elementwise op
} -> FAILURE : pattern failed to match
* Pattern : 'torch.aten.convolution -> ()' {
** Failure : not a supported reduce op
} -> FAILURE : pattern failed to match
} -> FAILURE : no matched legalization pattern
//===-------------------------------------------===//
<stdin>:21:11: error: failed to legalize operation 'torch.aten.convolution' that was explicitly marked illegal
%17 = torch.operator "onnx.Conv"(%arg0, %0, %1) {torch.onnx.dilations = [1 : si64, 1 : si64], torch.onnx.group = 1 : si64, torch.onnx.kernel_shape = [5 : si64, 5 : si64], torch.onnx.pads = [0 : si64, 0 : si64, 0 : si64, 0 : si64], torch.onnx.strides = [1 : si64, 1 : si64]} : (!torch.vtensor<[1,1,28,28],f32>, !torch.vtensor<[10,1,5,5],f32>, !torch.vtensor<[10],f32>) -> !torch.vtensor<[1,10,24,24],f32>
^
<stdin>:21:11: note: see current operation: %33 = "torch.aten.convolution"(%arg0, %20, %21, %31, %29, %30, %19, %32, %0) : (!torch.vtensor<[1,1,28,28],f32>, !torch.vtensor<[10,1,5,5],f32>, !torch.vtensor<[10],f32>, !torch.list<int>, !torch.list<int>, !torch.list<int>, !torch.bool, !torch.list<int>, !torch.int) -> !torch.vtensor<[1,10,24,24],f32>
```
Additionally, we require the canonicalization of `to_i1` operating on a
torch.constant bool to an `arith.constant ... : i1` for the e2e tests to
pass successfully.
This was found while tracing backwards graphs: the convolution_backwards
op will return None if the first result is not needed. Confirmed by
defining a custom op with a `Tensor` return signature and having its
meta kernel return None.
Reshaping tensors depend on directly matching individual dimensions to
their corresponding dim in the `torch.view` reshape dimensions. This
involves decoupling dynamic dimensions from their static counterparts
and support cleanup / canonicalization.
The previous conversions for AtenAdaptiveAvgPool1dOp and
AtenAdaptiveMaxPool2dOp are refactored into a general templated
conversion that works for all of the AtenAdaptive...PoolNdOp's.
New support is added for the following ops:
1. AtenAdaptiveMaxPool1d
2. AtenAdaptiveMaxPool3d
3. AtenAdaptiveAvgPool3d
Support is also provided for passing inputs without batch dimensions.
For example, applying adaptive_avg_pool2d to an input tensor of rank 3.
After [pytorch #118162](https://github.com/pytorch/pytorch/pull/118162)
gets down to torch-mlir, I'll add a test for AdaptiveMaxPool1d with
return_indices (which will pass with that upstream fix).
---------
Co-authored-by: James Newling <james.newling@gmail.com>
This folds small version of the tensor-scalar comparison operators as
they are commonly used for shape computations. This includes le, lt, ge,
gt, eq, and ne.
Add e2d support for `aten.linalg_norm` by decompose it to
`aten.linalg_vector_norm`.
Lowering to `aten.linalg_matrix_norm` is still unsupported.
To Test:
`python -m e2e_testing.main -v`
---------
Co-authored-by: Ze Zhang <ze.zhang@getcruise.com>
Finish supporting importing the vast majority of `onnx` operations. This
includes:
- region support
- region value inherentance
- `torch.string` support
- `torch.list` support
- `torch.optional` support
A bunch of small fixes are interlinked and trigger crashes if not
addressed as a group. This includes:
- aten view when expand from a rank-0 tensor
- slice folder with negative indices
- `aten._shape_as_tensor` folder on a rank-0 tensor
- `aten.cat` of a tensor with a length-0 tensor
We collapsed and broadcasted scatter indices to a single element
version. We should instead upport `tm_tensor.scatter`s support for
multiple indices and the implicitly broadcasted behavior. This avoids
the serialization and materializing a needlessly large indices tensor.
Strided slicing can occur with a negative stride. In these cases we need
to bound end differently. This included removing a function that was
generating bad limits.
This enables better re-use in downstreams which use different func
implementations and should have no impact on those that don't except in
opt pipelines if using the old form. With interfaces, explicit pipelines
via `--pass-pipeline=` must be used.
Simple folder for limited size aten tensor operations. This is primarily
useful for shape computation folding as they unfortunately can use
`aten` operators. Add, sub, mul are common examples of these folders.
This commit adds the OnnxToTorch lowering for cosh, acosh, asin, asinh,
and atanh op.
This commit also adds the TorchToLinalg lowering for acosh, asin, asinh,
and atanh op.
Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
Some operations include a backend matcher for specialized operations. We
map these back to generics so they appropriately match to the high
performance versions. This is done for the attention operation.
The lowering decomposes AtenTraceOp into an AtenDiagonalOp followed by
AtenSumOp.
The progress is tracked in
https://github.com/nod-ai/SHARK-Turbine/issues/333.
---------
Co-authored-by: Franz Haniel <franz.haniel@amd.com>
Folds aten::index_select ops under the following conditions:
1. If the input and output are the same shape, the indexing operation is
a NOP, so just return the input.
2. If the input has shape <1x1x...xNx...x1> (all 1's except for one
dim), and the output shape is <1x1x...x1> (all 1's), then there is a
single index, so extract the single element value and return a tensor
with that value.
---------
Co-authored-by: Dave Liddell <dliddell@xilinx.com>