Commit Graph

3044 Commits (f7b5c138703ec56ffa3e3b979c27707f5d9423a9)
 

Author SHA1 Message Date
Yuanqiang Liu 28aeb047c1
[Stablehlo] fix crashing on AtenEmbeddingBagSumExample_basic (#3389) 2024-05-26 12:34:56 +08:00
zjgarvey 27169dcda9
Replace some depreciated uses of cast (#3343)
Contributing towards #3299
2024-05-23 09:01:47 -07:00
Yuanqiang Liu 5bb1a65ec9
[Stablehlo] refactor reduction lowering and support aten.amin (#3383)
* implement detailed lowering template pattern
`ConvertAtenReduceAllDimsOp` and `ConvertAtenReduceKeepDimOp`
* support `aten.amin`'s lowering.
2024-05-23 20:40:20 +08:00
Gaurav Shukla 43f961eca4
[MLIR] Fix 64-bit product during aten.view lowering (#3378)
std::accumulate needs 64-bit init value to perform 64-bit arithmetic on
a list of integers.

Signed-off-by: Gaurav Shukla <gaurav.shukla@amd.com>
2024-05-23 08:59:28 +05:30
penguin_wwy d924d0047f
[FxImporter] Fix primitive type in return (#3379) 2024-05-23 09:55:33 +08:00
Angel Zhang 2e194e13d6
[Torch] Fix bugs for `Torch::AtenOneHotOp` (#3350)
This PR fixes the bugs for `Torch::AtenOneHotOp` by:

1) Using `Torch::kUnknownSize` as the default value for `numClasses` in
   the pattern matching stage in `DecomposeAtenOneHotOp`
2) Adding `AtenIntScalarOp` to the patterns in `TorchToArith`
3) Handling both `int` and `float` types for `off` and `on` values in
`TorchOnnxToTorch` conversion

It also includes:

1) A new test in `TorchToArith/basic.mlir`, for `torch.aten.Int.Scalar`,
and
2) A new test in `decompose-complex-ops.mlir`, for `torch.aten.one_hot`

**Dependencies**

This PR is dependent on #3334.
2024-05-22 17:19:08 +00:00
Yuanqiang Liu f4bfe3f948
Bump llvm and stablehlo (#3377)
* bump llvm to 1e5f29af81a5f6fda308074f6345b9fba4faa71c
* bump stablehlo to c44d9af8d4879adccf1054cb61a53377ae5898cb
2024-05-22 23:28:45 +08:00
Xinyu Yang 4d7cdba4bf
[Torch] eliminate "getWithLeastStaticInformation" in DecomposeAtenTriuOp (#3330)
I am trying to eliminate 'getWithLeastStaticInformation' in
DecomposeAtenTriuOp. Could you provide me with some suggestions?
@qingyunqu @zjgarvey 
See issue https://github.com/llvm/torch-mlir/issues/3312
2024-05-22 23:16:57 +08:00
penguin_wwy 972d47b586
[FxImporter] Fix constant bool tensor (#3375) 2024-05-22 22:59:01 +08:00
Angel Zhang 52be4bdc18
[ONNX] Fix bugs for the `onnx.OneHot` operator (#3334)
This commit fixes the bugs for the `onnx.OneHot` operator by:

1) Converting negative indices to non-negative indices
2) Handling both `int` and `float` types for `off` and `on` values
3) Using the correct result type

It also includes a new unit test.
2024-05-22 08:32:00 -04:00
Sambhav Jain 6e485574e5
[Pipeline] Use dedicated simplification pipeline for TorchDynamo frontend (#3376)
Discord Thread:
https://discord.com/channels/636084430946959380/1238330633328005243

## Context: 

[This](https://github.com/llvm/torch-mlir/blob/main/python/torch_mlir/fx.py#L61)
was updated to support e2e tests for the TorchDynamo frontend in
Torch-MLIR, where we run FX decompositions and import the FX IR to
generate Torch dialect, followed by
`torch-function-to-torch-backend-pipeline`, skipping only the shape/type
refinement for now. However, we should be able to skip many of the torch
simplification passes, as depicted in the [frontend
roadmap](https://github.com/llvm/torch-mlir/blob/main/docs/images/roadmap_frontend.png).

Based on IREE's TorchDynamo
[pipeline](https://github.com/iree-org/iree/blob/main/compiler/plugins/input/Torch/InputConversion/Passes.cpp#L29),
the only two passes we seem to require are: `ReduceOpVariantsPass` and
`DecomposeComplexOpsPass`. This is inline with our findings as well
based on initial exploration.

This PR creates a dedicated frontend simplification pipeline for
TorchDynamo / FX Importer which calls only `ReduceOpVariantsPass` and
`DecomposeComplexOpsPass`. We rely on the e2e fx_importer tests to
ensure we're not regressing by removing many of the passes that were
historically needed for TorchScript.

One notable change here is that we do not call the
`LowerToBackendContractPass` anymore, which used to call
`TorchSimplificationPipeline` iteratively until VerifyBackendContract
was clean. Some of this was required for the shape/type refinement to
converge, which seems a non-issue for Dynamo frontend. Do we anticipate
this (the iterative invocation of TorchSimplificationPipeline followed
by VerifyBackendContract) to be worth retaining in the Dynamo frontend
pipeline? If so, I can make those changes, PLMK.
2024-05-22 05:23:18 -07:00
Aart Bik 560ca24771
[torch-mlir][sparse] replace xavier with ones initialization (#3374)
ensures stability of results between different set ups
2024-05-21 17:12:55 -07:00
RattataKing fcf48872b3
[ONNX] Implement Softsign op (#3373) 2024-05-21 12:10:26 -07:00
penguin_wwy c2c1c2cfa4
[FxImporter] Fix failed e2e case (#3365) 2024-05-22 00:20:54 +08:00
Vivek Khandelwal b870729efe
[torch] Fix `onnx.MaxPool` lowering (#3133)
This commit fixes the onnx.MaxPool op lowering which was lacking the
indices result support.

Signed-Off By: Vivek Khandelwal <vivekkhandelwal1424@gmail.com>
2024-05-21 21:05:32 +05:30
Aart Bik c0e7d2667d
[torch-mlir][sparse] inference mode for sparse GCN test (#3369) 2024-05-20 19:52:16 -07:00
zjgarvey 297c270980
onnx.Resize and aten._interpolate : allow n spatial dims. (#3368)
The old lowering only had logic for 2d (i.e. images). this patch allows
interpolation for n spatial dims, which is required for some 3d vision
models such as

- onnx/models/pytorch-3dunet_vaiq_int8

which successfully compiles and runs with this patch.
2024-05-20 13:35:27 -07:00
lialan 99511cef82
Implement `onnx.Hardmax` lowering (#3342)
Co-authored-by: Ubuntu <xunli@wsno1.judsoscro3wupi0qm4bjlj5m3b.bx.internal.cloudapp.net>
Co-authored-by: Hasekawa-Takumi <bewater.private476@passmail.net>
2024-05-20 20:56:24 +05:30
Wu Yuan cc28d566ff
[Stablehlo] Support AtenTrilOp (#3359)
1. lower aten.tril to stablehlo composed by iota, select and so forth
2. add related e2e test cases
2024-05-20 15:49:24 +08:00
Yuanqiang Liu 8814d0ae64
[Torch] emit aten.dot and canonicalize it to aten.matmul (#3361)
* canonicalize `aten.dot` to `aten.matmul`
2024-05-18 22:45:14 +08:00
Aart Bik e80f072ba4
[torch-mlir][sparse] example of a sparse graph convolution (#3363) 2024-05-17 15:43:50 -07:00
zjgarvey 6cba93b16e
[ONNX][TorchToLinalg] Add support for dynamic dims in Interpolate lowering (#3351)
Addresses [Shark-Turbine
#196](https://github.com/nod-ai/SHARK-TestSuite/issues/196)

Related tracker [Shark-Turbine
#566](https://github.com/nod-ai/SHARK-Turbine/issues/566)

Related onnx.Resize issues [Shark-Turbine
#616](https://github.com/nod-ai/SHARK-Turbine/issues/616)
2024-05-17 12:18:57 -07:00
Andrew Woloszyn 513d89c16d
Add support for the onnx.SequenceLength op. (#3362) 2024-05-17 12:17:43 -07:00
Xida Ren (Cedar) 2937753070
[Documentation] Show faster build command first in docs/development.md (#3355) 2024-05-17 18:59:51 +00:00
Andrew Woloszyn 72e38dcbbc
Add support for the onnx.SequenceConstruct op. (#3316) 2024-05-17 22:51:28 +05:30
Sambhav Jain 706efaf57c
[Bazel] Add SparseTensorDialect deps (#3357)
Required after https://github.com/llvm/torch-mlir/pull/3318 landed.

GHA:
https://github.com/sjain-stanford/torch-mlir/actions/runs/9120607050/job/25078271790
2024-05-16 21:44:46 -07:00
Suraj Sudhir cba91a9b96
[ONNX][TOSA] Adds ONNX to TOSA e2e tests (#3358)
- Refactors OnnxBackend to be generic and consume any Torch backend.

---------

Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2024-05-16 21:44:26 -07:00
Xinyu Yang 28193fd985
[Stablehlo]index type use i64 (#3354) 2024-05-16 15:33:23 +08:00
Xinyu Yang 7faba75696
[Torch] Decompose AtenMaskedScatterOp (#3353)
Co-authored-by: Yuanqiang Liu <liuyuanqiang.yqliu@bytedance.com>
2024-05-16 15:27:25 +08:00
Xinyu Yang a9edefb3cf
[Torch] Fix AtenSliceTensorOp::fold (#3345) 2024-05-16 11:42:43 +08:00
penguin_wwy 405f884522
[stablehlo] verify stablehlo backend contract (#3338) 2024-05-16 11:03:43 +08:00
Suraj Sudhir 0ca88028cd
[FxImporter][TOSA] Enable FxImporter to TOSA e2e tests (#3349)
Signed-off-by: Suraj Sudhir <suraj.sudhir@arm.com>
2024-05-15 14:37:30 -07:00
Peiming Liu ccb772cd0f
[sparse] propagate sparsity properly when decompose torch operations. (#3318) 2024-05-15 10:09:27 -07:00
Aaron St George ba32b9cee7
Don't fold `aten.clone` if result isn't same type as input (#3347)
Similar to https://github.com/llvm/torch-mlir/pull/2824, we were seeing
some assertion failures after the addition checks around folders were
tightened up in LLVM: https://github.com/llvm/llvm-project/pull/75887 .
This PR essentially moves the logic that used to be applied at the LLVM
level into the folder, which seems to be the suggested fix.
2024-05-16 00:07:45 +08:00
Yuanqiang Liu 5928f68e60
[Stablehlo] refactor amax, max, max.dim's lowering to stablehlo (#3348)
* not to decompose `aten.amax` on `stablehlo` backend. Because it could
be lowering to `stablehlo.reduce` directly.
* lowering `aten.max.dim` to `stablehlo.reduce apply max` when
`AtenMaxDimOp.getIndices()` doesn't have users. It's more simple.
2024-05-16 00:05:19 +08:00
Xinyu Yang 6b95dd461d
[Torch] Fix PrimNumToTensorScalarOp::fold (#3339)
In constant folding progress, a new constant op will be created
according to the origin op's result type.

See the code in TorchDialect.cpp.

```cpp
Operation *TorchDialect::materializeConstant(OpBuilder &builder,
                                             Attribute value, Type type,
                                             Location loc) {
  if (auto integerType = dyn_cast<Torch::IntType>(type))
    return builder.create<Torch::ConstantIntOp>(loc, cast<IntegerAttr>(value));

  if (auto floatType = dyn_cast<Torch::FloatType>(type))
    return builder.create<Torch::ConstantFloatOp>(loc, cast<FloatAttr>(value));

  if (auto numberType = dyn_cast<Torch::NumberType>(type)) {
    if (auto floatValue = dyn_cast<mlir::FloatAttr>(value)) {
      return builder.create<Torch::ConstantNumberOp>(loc, floatValue);
    } else if (auto intValue = dyn_cast<mlir::IntegerAttr>(value)) {
      return builder.create<Torch::ConstantNumberOp>(loc, intValue);
    }
  }

  if (isa<Torch::BoolType>(type)) {
    return builder.create<Torch::ConstantBoolOp>(loc, cast<IntegerAttr>(value));
  }

  if (isa<Torch::NoneType>(type))
    return builder.create<ConstantNoneOp>(loc);

  if (auto stringAttr = dyn_cast<StringAttr>(value))
    return builder.create<ConstantStrOp>(loc, stringAttr);

  if (auto elementsAttr = dyn_cast<ElementsAttr>(value)) {
    // Only !torch.vtensor can be constant folded. !torch.tensor has
    // non-trivial aliasing semantics which prevent deduplicating it.
    assert(isa<ValueTensorType>(type) && "should be a vtensor type!");
    return builder.create<ValueTensorLiteralOp>(loc, elementsAttr);
  }

  return nullptr;
}
```
So when the op has a tensor result type, it must be "ValueTensorType"
due to the **assert** statement. However, many fold methods in
TorchOps.cpp only have a judgment of "BaseTensorType".
2024-05-15 20:54:19 +08:00
Aart Bik 44fa6c3afd
[torch-mlir][sparse] sparse diagonal feature scaling test (#3344) 2024-05-14 12:13:54 -07:00
Peiming Liu 8e74d64e8f
[sparse] convert to sparse before any use in sparse test. (#3337) 2024-05-14 09:10:36 -07:00
zjgarvey 73b3065a94
[ONNX] Reduces Transpose Opset Version (#3302)
As mentioned in issue #3290 , the difference between onnx.Transpose in
versions 1 and 13 is minimal, and therefore should be supported with the
same conversion pattern.
2024-05-14 21:38:56 +05:30
NeverRaR 26b78285bf
[MLIR][ONNX] Add OnnxToTorch support for GlobalMaxPool Op (#3232)
https://github.com/nod-ai/SHARK-Turbine/issues/658

---------

Co-authored-by: root <root@i32b01216.sqa.eu95>
2024-05-14 15:55:39 +05:30
Archana Ramalingam 20f312853c
[MLIR][ONNX] Add OnnxToTorch support for ReduceLogSumExp Op (#3201)
This commit adds the OnnxToTorch support for ReduceLogSumExp op
2024-05-14 09:54:26 +05:30
Aart Bik 667dfcbc5a
[torch-mlir][sparse] enable test on ReLu (#3336)
Downstream MLIR sparsifier has some (rudimentary) support for ReLU now,
and this test can now be enabled with correct end-to-end behavior.

Also see discussion at:

https://discourse.llvm.org/t/min-max-abs-relu-recognition-starter-project/78918
2024-05-13 15:34:26 -07:00
Aart Bik 08355be5d0
[torch-mlir] bump to llvm@70e227a404e51f9248c7ad5d79953805b2afacb4 (#3335) 2024-05-13 14:52:25 -07:00
zjgarvey 911e723581
Expands Q Commuting Ops (#3332)
After running the model tests in SHARK-TestSuite, I noticed a few model
failures due to half-fusion.

Notably, RDN_pytorch_vaiq_int8 had a depth=5 convolution chain with
multiple AtenViewOp's.
2024-05-13 11:01:53 -07:00
penguin_wwy 20d4d16d32
[FxImporter] Add an e2e test example for FxImporter (#3331) 2024-05-14 00:45:19 +08:00
zjgarvey 75d1d72059
Generalize Operand Quantization in FuseQuantizeOps (#3327)
This change enables more customization with operand quantization, and
generalizes the patterns QuantizeOperands and QuantizeTransposeOperands
to QuantizeOperandsPastCommutingOps.

This allows for passing quantization through operations which are
functionally unaffected by quantization, such as view-like ops. The
purpose of this change is to address a myriad of quantization issues
seen in quantized onnx models that have some reshape-like operations
sandwiched in between a dequant and something like a matmul (whose other
operand is immediately quantizable).
2024-05-12 20:49:59 -07:00
Yuanqiang Liu 0b7cbf5e60
[Stablehlo] fix aten.randn's lowering with f32 element type (#3329) 2024-05-11 17:40:04 +08:00
Yuanqiang Liu 5f7cb9e253
[Stablehlo] lowering aten.randn & aten.normal_functional to mhlo.rng … (#3328)
…NORMAL

* split lowering of uniform, randn, normal from Basic.cpp into Rng.cpp
2024-05-11 15:33:37 +08:00
Stella Laurenzo 00efec0b73
[linalg] Implement strict mode lowering for aten.view. (#3319)
* Enables assume_strict_symbolic_shapes on fx_importer imported
programs, indicating strict shape semantics.
* Reworks the view->reshape lowering to take advantage of strict mode
and do one of:
  * Collapse to 0D
  * Flatten/Unflatten when there is an inferred dim.
  * Fallback to tensor.reshape
* Splits some test cases up and adds an attribute to control the old
pattern (so new corners can be tested in strict mode in isolation).
* Dynamic inferred mode needs upstream work to generalize expand_shape
(so that case is suppressed here).
* Deletes the assert from the existing tensor.reshape lowering if strict
shape mode is enabled (since the condition it is dynamically asserting
cannot happen).
2024-05-10 13:45:50 -07:00
Andreas Falkenberg adafd51823
[onnx] Gridsampler addition of nearest mode (#3320)
Added nearest neighbor selection for onnx.Gridsampler
2024-05-10 11:42:10 -07:00