Commit Graph

120 Commits (f9d9518f6e85637eff72dddbe518c7176be3f3b8)

Author SHA1 Message Date
Sean Silva 927546b3c5 Add RefinePublicReturn pass.
This pass allows shape information to be propagated to return types,
which is nontrivial and cannot be cleanly put anywhere else as it
changes the public ABI, which is a concern that we want to keep
concentrated in one place.
2021-04-07 11:06:34 -07:00
Sean Silva 1e357ae680 Add simple type refinement pass.
Currently implemented as a simple intraprocedural dataflow analysis over
a standard ShapedType lattice (hasRank, sizes, and elementType).

It currently hardcodes a few key pieces of information:
- shape transfer functions
- whether it is legal to update the operand type of an op

This needs to be made pluggable obviously and the core propagation logic
moved somewhere agnostic.
2021-04-07 11:06:34 -07:00
Sean Silva 6431b0f11f Add primitive ArrayToTensor (numpy-array-to-tensor) pass.
The current implementation is just sufficient to do a unary aten.tanh
from the e2e spike, and just applies some local rewrite patterns.  I've
sketched out the more full explanation of where this pass eventually
need to go in the pass docs.

Adding this required adding `numpy.tensor_static_info_cast`, which is
the tensor analog of `numpy.static_info_cast`. This op encapsulates the
same numpy-specific "no runtime code" casting semantics, in particular
the interpretation of `!numpy.any_dtype`. The
`numpy.tensor_static_info_cast` I see in practice now are "information
erasing" and will be removed by a later pass that exploits the fact that
aten ops are agnostic to the static info in the operand types (so
substituting a type with more static info is fine).

Side note: we *need* to do dtype and rank inference before aten->tcf
(which will eventually mostly be aten->linalg+guards), because each aten
op is idiosyncratically overloaded based on dtype and rank. Without
copying that idiosyncratic overloading into lower layers (layering
violation), we cannot really lower it to anything until we do that.
2021-04-05 17:56:35 -07:00
Sean Silva 30356c41c8 Add torch-adjust-calling-conventions pass.
This pass incorporates torch.type_bound info and also removes NoneType
returns (eventually it will rewrite tuple types too, but can't yet
because !basicpy.TupleType doesn't track element types).

Recommend looking at adjust-calling-conventions.mlir first to see what
it is doing, and holding your nose for the implementation of the pass.
I decided to implement this with the conversion framework, because it
gives us *some* goodies for type conversion -- mainly avoiding large
amounts of tricky RAUW dances. Unfortunately, the conversion framework
isn't a perfect fit for a couple reasons:
- the incorporation of torch.type_bound is a context-sensitive rewrite
  (requires looking at the arg attr, not just the type).
- NoneType conversion is 1->0, which requires some special handling
- (not implemented yet) 1->N tuple type conversions require special
  handling.
It's a little bit scary, but on balance doing it the other way would
have its own downsides.
2021-04-05 17:56:35 -07:00
Sean Silva e749074bae Basic infra for annotate shapes and dtypes on arguments.
These allow users to annotate a known "type bound" on the argument,
which can seed shape/dtype inference. We don't rewrite the function
types as part of the import process (it will happen in a
yet-to-be-written pass) because:

1. We would need to interprocedurally rewrite all calls to keep the IR
   consistent. Currently, we have a place after GlobalizeObjectGraph but
   before we convert to tensors where this is convenient to do. Ideally,
   we would do this on the object graph representation.

1. We don't necessarily know that adjusting the function type is a legal
   calling convention change. The pass will have blessed knowledge (by
   the pass pipeline author) that adjusting the argument type based on
   the type bound is safe (which it frequently is).

2. Note that in principle, a type bound could be a fairly general thing
   (such as maximum sizes of dimensions, unions of multiple concrete
   types, etc.). The pass will in principle have logic to interpret the
   type bounds and to determine a suitable "best" (and legal) argument
   type.
2021-04-01 18:40:03 -07:00
Sean Silva c6d56fed8a Add unary tanh lowering. 2021-03-30 16:39:49 -07:00
Sean Silva 99178a167d Bump llvm-project to 0524a09cc7e1a0797982feacf505825231efbee7
- renames of OwningRewritePatternList -> RewritePatternSet
  - also `insert` to `add`
- RewritePatternSet holds a context now
- memref dialect split from std
2021-03-23 14:29:05 -07:00
Bryce Arden 4591884d06 [refbackrt] Scalar arg support
* Adds f32 scalar argument support across the ABI boundary.
* Adds support for passing input type / shape information
  across the ABI boundary
* Adds support for parsing / creating input FloatAttr's in
  `npcomp-run-mlir`
2021-03-23 13:16:44 -07:00
Sean Silva 703428eff4 Add support for "trailing_" and "out" variants of various ops.
We already had the `promoteTrailingOutTensor` flag, but weren't using
it. A inplaceVariantKernelName flag needed to be added.

This change is a little dissatisfying, as the conversions done by the
RecognizeKernelsPass are currently non-orthogonal. In particular,
`kDropResultAndAliasArg0` probably won't work as intended if mixed with
these (we probably need to promote kDropResultAndAliasArg0 to not be an
arg-level thing anyway, as we have done with promoteTrailingOutTensor).

This involved adding a new op `numpy.overwrite_array`.

```
numpy.overwrite_array %arg2 overwrites %arg0 : tensor<2x3xf32>, !numpy.ndarray<[2,3]:f32>
```

This models the destructive update behavior. Note that in the above op,
we cannot simply RAUW %arg0 with a suitably conveted %arg2 (for example,
%arg0 might have uses that are not dominated by %arg2, or might have an
alias relation with some other array in the program). In general, we
need a pass analogous to "SSA-formation" which knows how to see through
these to uncover an underlying tensor program.

Also, add tanh_out_e2e.py/div_inplace_e2e.py and fix some bitrot in
refjit.py which is my running example I'm trying to get working.
2021-03-19 10:34:50 -07:00
Aaron Arthurs 4fd9b4afb5
Import ATen conv2d conversion and test (#180)
* Import ATen conv2d conversion and test

This is a first attempt at expanding ATen-to-TCF conversion for the
conv2d operator. Eventually, this will come in use when lowering a
high-level conv-based model.
2021-03-12 17:21:16 -08:00
Sean Silva 58c7030104 Support multiple instances of a class in GlobalizeObjectGraph.
This happens in practice with e.g. ResNet from torchvision (multiple
instances of the same BatchNorm class).

The key observation is that for this program, and the expected set of
programs, we can convert the program to the same globalized form with a
bit more static analysis and effort to suitably monomorphize the
program. Though what we are doing here is fairly annoying to implement,
it saves any nontrivial later pass from having to do similar analyses
(or worse). E.g. shape inference would need to be object-graph aware,
mutation/lifetime analyses would have to be aware, etc. Additionally, it
would make us front-load what it means to have a !torch.nn.Module type
on an ABI boundary, which we are just not ready to handle.

I'm really, really hoping that in practice we can get away with
this, otherwise it's going to be really rough designing a representation
(and implementing everything to back it) that is convenient to transform
and gracefully scales from full object graph (in the most dynamic case)
down to a fixed set of global slots like we have here (in the most
static case, which we presume a lot of practical programs fall into).

This also involved introducing a
`torch-prepare-for-globalize-object-graph` pass that does a minimal set of
lowerings to simplify the IR into a more orthogonal and analyzable form,
and a `torch-globalize-pipeline` helper.

Recommended review order:
- updated documentation in Passes.td
- new tests in `globalize-object-graph-multiple-instances*.mlir`
- implementation of GlobalizeObjectGraph.cpp
- PrepareForGlobalizeObjectGraph.cpp + prepare-for-globalize-object-graph.mlir
- misc stuff like torch-globalize-pipeline pipeline definition.

With this, we can import, globalize, and inline resnet18 from
torchvision:
https://gist.github.com/silvasean/821586afc19b67d9fb72030b2e0adeb8
2021-03-11 19:21:07 -08:00
Sean Silva c837dbb077 Properly import the entire torch::jit::CompilationUnit
This primarily unlocks proper handling of free functions (that is,
functions that are not methods of any torch.nn.Module).

Recommended review order:
- `ivalue_importer.cpp` + `ivalue_import/functions*.py`
- `GlobalizeObjectGraph.cpp` + test case
- misc other stuff

The `torch::jit::CompilationUnit` is basically a backing store or
"context" holding all the possible functions in the program. The
previous code was not explicitly accessing this data structure, since it
just imported the `torch::jit::Function`'s that it saw attached to
methods.

Subtly, any time a TorchScript module called into a free function, the
free function gets incorporated into the torch::jit::CompilationUnit,
but doesn't show up anywhere when dumping the module, except in the
curious pattern:

```
%5 : Function = prim::Constant[name="adaptive_avg_pool2d"]()
%6 : Tensor = prim::CallFunction(%5, %input.1, %4)
```

That is, calls are indirect calls, and are accessed via `prim::Constant`
materializing a function object. Even stranger, the `name` attribute here
doesn't really even tell the full story -- it doesn't correspond to
anything. It turns out that the c10::FunctionType itself actually holds
a pointer to the `torch::jit::Function` in the compilation unit
directly (so there is actually no indirection in prim::CallMethod,
because any two values of the same FunctionType call the same
function!). E.g. when converting the IR to bytecode, the "name" is
ignored [code link](1d6bd15790/torch/csrc/jit/runtime/interpreter.cpp (L937)).
We do import `prim::CallFunction` as a `std.call_indirect` though
because it's more braindead to do it that way (it gets canonicalized to
a direct call easily).
2021-03-01 12:08:01 -08:00
Sean Silva 79a3f639bf Give torch.global_slot an initializer region.
This is a much simpler representation than the ad-hoc initializer
function we had before. It is also less general, but given the rationale
in Passes.td it seems like the right tradeoff right now.

We can probably carry this representation for quite a while, and when we
can't, it likely means that TorchScript has fixed their object identity
bug and we probably need to just upgrade to a more general object graph
modeling (more general than GlobalizeObjectGraph).

In particular, we don't want to deal with defining and carrying around
this initializer function concept until we need it. For example, if we
want to constant-fold the global slots into uses, this is a much better
representation, and it plays better with symbol-dce (the initializer
function counts as a "use" of the symbol).

(the alternative would have been to write a pass that converts the
initializer function to this form when possible, but I realized that
lots of information had been lost which made that fairly annoying -- it
was all self-inflicted anyway, so best to just go to the source
(GlobalizeObjectGraph) before the information is lost)

Now symbol-dce works nicely (no more "training" bools)
```
pt_util ~/tmp/classifier.pt --import --exported-name forward \
| npcomp-opt -torch-globalize-object-graph -inline -symbol-dce
```
IR: https://gist.github.com/silvasean/8abe63d70d24e29d6db9170ccc8d512b
2021-02-26 16:24:19 -08:00
Sean Silva a375ccf9da Add ability to annotate TorchScript classes.
The first use case is to annotate certain program constructs as either
exported or private. In this commit we plumb it down to
GlobalizeObjectGraph which makes use of this information.

Recommended review order:
1. class_annotator.h/.cpp + `test/module_import/annotations/*`
    - New abstractions to communicate with Python code and annotate.
2. IR changes in TorchOps.td
    - Adding "private" attribute to various things.
3. ivalue_import.cpp changes
    - Module + ClassAnnotator = annotated IR
4. GlobalizeObjectGraph.cpp + tests
    - use new "private" attributes to create "private" IR.
    - also, tweak some of the op deleting mechanics, which was triggering
      some memory errors / assertions

With this, we can run the classifier through and inline it as follows:
```
frontends/pytorch/utils/pt_util.py --import --exported-name forward ~/tmp/classifier.pt \
| npcomp-opt -torch-globalize-object-graph -inline
```
IR: https://gist.github.com/silvasean/32dcad9f6270557f412094a77cecdd69
2021-02-25 11:28:34 -08:00
Sean Silva c424c24ed8 Bump llvm-project to c68d2895a1f4019b387c69d1e5eec31b0eb5e7b0
- dialect registration
- StringAttr::get: order of context arg
- math dialect
- LogicalResult nodiscard
- error message for invalid broadcast
2021-02-22 12:23:24 -08:00
Sean Silva 1b769f7841 Extend GlobalizeObjectGraph to handle torch.prim.GetAttr returning NnModuleType
This happens in practice. With this, we can globalize slots for the
non-trivial classifier layer obtained from
https://github.com/NVIDIA/NeMo/blob/main/tutorials/nlp/Joint_Intent_and_Slot_Classification.ipynb

This also adds support for tuple return types, which were needed by that
model.
2021-02-19 10:23:25 -08:00
Sean Silva 158c5c484d Implement GlobalizeObjectGraph transformation.
This required restructuring of how we model TorchScript on import. The
main difference is that now we split out a `torch.class_type` that holds
methods and declarations of the types of each slot. This is more
consistent with TorchScript (our previous representation was
"denormalized").

Recommended reading order:
1. check out the description of `torch.class_type` in `TorchOps.td` and
   look at `test/Dialect/Torch/ops.mlir` and
   `frontends/pytorch/test/module_import/` to familiarize with the new
   representation.
   - Just look at the new IR. The diff between the old names and new
     names is confusing.
2. check out `test/Dialect/Torch/globalize-object-graph*.mlir`
   and read along with the pass description in
   `include/npcomp/Dialect/Torch/Transforms/Passes.td`
3. Read the code in `GlobalizeObjectGraph.cpp` and miscellaneous changes
   in `ivalue_importer.cpp`, `TorchOps.cpp`, etc.
2021-02-18 18:18:47 -08:00
Sean Silva 7f7bf39551 Add prim::Print and fix prim::CallMethod
For now, we are treating strings as bytes.
2021-02-10 15:15:56 -08:00
Aaron J Arthurs 63ee4f268a Import basic TCP pad test 2021-01-28 12:01:35 -08:00
Aaron J Arthurs c0e14da888 Fix TensorFromElementsOp reference 2021-01-28 12:01:35 -08:00
Aaron J Arthurs fc650c9447 Import TCP pad 2021-01-28 12:01:35 -08:00
Sean Silva 689b40c7a6 Add initial TorchScript module importer
It turns out that this was easiest to structure as a general IValue
importer, since torch module are just one of the possible IValue's.

We import the IValue object graph in a braindead fashion into basicpy
ops and a new `torch.nn_module` op that is used to model the
attributes/methods of a torch::jit::Module IValue. See `Torch/ops.mlir`
for an example, and also check out the .py import tests in
`frontends/pytorch/test/module_import`.

As part of this change, a few housekeeping tasks:
- extract some helpers from graph_importer.cpp
- more helpers around the C API
- misc touchups
2021-01-28 11:55:17 -08:00
mikeurbach 0f6a65a1c5
Enable building using LLVM_EXTERNAL_PROJECTS. (#152)
This allows building NPCOMP as an external project of LLVM, similar to
how CIRCT can be built: https://github.com/llvm/circt/pull/227.

The CMake options to use this build style look like this:

```
  -DLLVM_EXTERNAL_PROJECTS=npcomp \
  -DLLVM_EXTERNAL_NPCOMP_SOURCE_DIR=/path/to/mlir-npcomp \
```
2021-01-26 11:43:43 -07:00
Sean Silva 3f4161635c Bump llvm-project to be7352c00d51f4358db3a23ed6a077f7cb48eafd
- TensorFromElementsOp -> tensor::FromElementsOp
- `cmpi "eq", ...` -> `cmpi eq, ...`. Same for `cmpf`
- syntax change for private func ops
- some changes to the python bindings
2021-01-21 11:16:55 -08:00
Sean Silva 6351474382 Bump llvm-project to bc556e5685c0f97e79fb7b3c6f15cc5062db8e36
- `let typeDesription` -> `let description`
- LLVMIntegerType -> IntegerType
2021-01-08 14:18:09 -08:00
Stella Laurenzo 3f706473fd NFC: Delete npcomp python API and switch to upstream.
* Most updates are mechanical except:
  * python/npcomp/__init__.py and python/NpcompModule.cpp: New init/registration bits to replace some automatic things being done in the old bindings. Also an annoying linkage hack that I'll need to triage next.
  * NpcompModule.cpp: New python helpers for custom types and other hard to reach items (for the new bindings).
  * PybindUtils.h: Extended type casting so that the local extension can directly exchange Mlir* C types.
  * python/npcomp/dialects/*: Build support and ODS bindings for local dialects.
  * mlir_utils.py: Defines an ImportContext to replace the old/bad "Helper" class that tracked locations, and insertion points. This has a number of methods on it that would be good candidates to think about better ways to do them upstream.
* Also hoisted a few stand-alone samples to dedicated unit tests as they covered important things.
* More cleanup can be done, but keeping this patch as mechanical as possible to stay in NFC land (this is big enough).
2021-01-08 10:46:24 -08:00
Sean Silva 97d6d04d41 Bump llvm-project to 16c6e9c58e9ae50a775945e6b407f1891f353d2f
Changes:
- linalg init tensor change (outs+init -> just outs)
- IntegerType::get and other builtin types now take the context as the
  first arg
- LLVMType::* is gone. Now LLVM Types are just regular Type's.
2021-01-05 16:12:11 -08:00
Aaron Arthurs 85898aaf10
Add TCF convolutional op with bias addition (#137) 2020-12-15 12:53:12 -08:00
Sean Silva b2077738ca Bump llvm-project to 444822d77a7fea28aa49edf24533c987efa1b2ee
Fixes:
- renames StandardTypes -> BuiltinTypes
- std.extract_element -> tensor.extract
2020-12-11 14:43:38 -08:00
Sean Silva 46aa6d0a24 [RefBackend] Fix leaks related to ABI boundaries.
Best as I can tell (e.g. from LeakSanitizer), this fixes all the leaks
except for those due to buffers created internally to the codegenned
code itself (up next I'll add the buffer deallocation pass to fix
those).

The main change is that instead of attempting to pass `refbackrt::Tensor`
to the codegenned function directly, we make all the ABI types be
UnrankedMemRef which gets passed awkwardly (but workably) as a
`{size_t rank, void *ptrToDescriptor}` on the ABI. The reason why
refbackrt::Tensor wasn't workable is that is that MLIR doesn't really
have a way to deal with the lifetime of unranked memref descriptors that
happen inside the function, which is inevitably what would happen in the
old code that would emit runtime calls to
`refbackrt.to_memref/refbackrt.from_memref` to convert back and forth to
`refbackrt::Tensor` inside the codegenned code.

So, instead of the `refbackrt.to_memref/refbackrt.from_memref` with no
real sound basis for valid lifetime management, we now have a lovely
piece of code in `refbackrt::invoke` in `Runtime.cpp` that just barely
seems to be sound. We rely on the codegenned code having these
properties, which it seems to have:

- it won't free memref descriptors or their backing buffer for arguments
  of UnrankedMemRef type.

- it will allocate a separate memref descriptor for each result
  UnrankedMemRef (which is ensured by having a separate memref_cast for
  each)

- we can sniff the `allocatedPtr`'s (i.e. the backing buffer pointers)
  to avoid double-freeing in the case of aliasing of the backing buffer
  (including backing buffers for arguments feeding into results)

- to catch the case of statically allocated data (which we need to avoid
  passing to `free`) , check if the `allocatedPtr` is (no joke) equal to
  `0xDEADBEEF`, because there is otherwise no way to distinguish
  statically allocated from malloc'ed data...  (std.global_memref lowering
  to LLVM by happenstance sets the allocatedPtr equal to `0xDEADBEEF`,
  presumably mainly as a debugging thing)

Even with all this, we *still* need to (internally to refbackrt::invoke)
make copies of all inputs/outputs! And the details of how the LLVM-level
ABI gets laid out for e.g. function arguments/returns is still super
tricky.

This really highlights how deficient memref is as the general runtime
type for our use case. It's stewing in my mind how best to improve the
situation. My general gut feeling is that IREE's abstractions for this
are "right", but I need to think more how to distill those aspects of
IREE's design in a "reference" way for RefBackend.

Some implementation notes:

- In terms of how this is implemented, this did catch a bug in our ABI
  wrapper functions in LowerToLLVM.cpp, which I had to fix (it happened to
  work before through some combination of npcomprt::Tensor being passed as
  a single pointer + probably me infinite-monkey-ing it until it worked)

- This actually removes 2 out of the 3 compiler runtime functions (the
  only one left is "abort_if". (most of the memref descriptor code moved
  from CopmilerRuntime.cpp to Runtime.cpp)

  - this also means deleting `refbackrt.from_memref` and
  `refbackrt.to_memref`
2020-11-25 13:09:58 -08:00
Stella Laurenzo 3937dd14cb Add basicpy.numeric_constant op.
* Going through TODOs on the PyTorch side, this is a big cause of them (not being able to have constants for signed/unsigned).
* Added complex while in here since we're at the phase where it is better to just have things complete than partially done.
2020-11-24 16:44:40 -08:00
Stella Laurenzo bea0af419d NFC: Prefactor some basicpy ops in advance of more type work.
* Organizes the BasicPyOps.td file by function.
* Renamed `to_boolean` -> `as_predicate_value` (trying to consistently use "predicate" to refer to i1/low-level types and Bool/Boolean to refer to Python bool types).
2020-11-24 15:49:37 -08:00
Sean Silva 358159a6eb [RefBackend] Open-code shape.get_extent as extract_element
It was annoying that we were creating shape.get_extent in the middle of
the bufferization pipeline, as it required running convert-shape-to-std
at an awkward place. To make that cleaner, just open-code the
extract_element ops that shape.get_extent expands into.

This is a little gross, but it helps with the macroscopic pipeline
ordering issues. Anyway, the train is long-gone of trying to treat
shapes as some special data type that should only be operated on with
shape ops.

Also,
- reorder tensor constant bufferize (which is a module pass) to bracket
all the bufferization function passes, to make the parallelism
opportunities there clearer. Now we have a very clean little
bufferization segment of our pipeline construction.
2020-11-17 11:00:38 -08:00
Stella Laurenzo a7ff87a922 Sever C++ level depend on IREE and rebase on exe and python interface.
* IREE doesn't have proper install support, so there is some temporary hoaky hacking in our CMakeLists.txt to shuttle some symlinks around.
* Reworked the original numpy e2e with IREE test to pipe through iree-translate.
* Removed all of the C++-level dependencies.
* Will generalize and apply to the PyTorch backend in a followup.
2020-11-16 21:32:56 -08:00
Sean Silva 5227d52c26 [RefBackend] Use std.global_memref instead of homegrown thing
This vastly simplifies our code, allowing deleting multiple ops,
simplifying multiple passes, and removing a whole pass.

Now `refback` dialect is down to one op (refback.alloc_memref, which
simplifies allocations to just take a shape instead of individual
extents).
2020-11-13 18:43:50 -08:00
Stella Laurenzo d1488c8572 Move existing npcomp.compiler -> npcomp.compiler.numpy.
* Makes room for the pytorch compiler.
* Some common things can be hoisted from the numpy side but some more consolidation needs to happen first.
2020-11-10 19:26:40 -08:00
Sean Silva 1c7c362e29 [TCP] Replace tcp.matmul with linalg.matmul.
This involved adding a `tcp.splatted` op to splat a dynamically sized
init tensor. See rationale in TCPOps.td docs.

One interesting observation is that when lowering tcf.matmul to
linalg.matmul, we need to both 1) create the error checks and 2)
calculate a shape transfer function to create the init tensors.
Previously, 2) was deferred to bufferizing tcp.matmul later. I'm not
sure if this is a conflation of concerns or not. For now, it's not a big
burden.
2020-11-10 18:58:28 -08:00
Sean Silva 0427aacb0b [TCP] Replace elementwise ops with std elementwise ops. 2020-11-10 18:58:28 -08:00
Sean Silva ceab22cf90 Bump llvm-project to 53a0d45db6d0f33dfbb724c99ce2560ae25473c2
Date:   Wed Oct 28 13:25:48 2020 -0700

- fixup for func syntax change
2020-11-10 15:22:46 -08:00
Stella Laurenzo e60dc2470e Add aten.maximum op and conversions from aten->tcf.
* Conversions are very simple, suporting mul, maximum and add (alpha=1 only).
* Example added with pass pipeline needed to run.
* Much missing off of the golden path but sufficient for such simple cases.
2020-11-04 17:20:54 -08:00
Stella Laurenzo 6c702b149f Add a number of kernels and new patterns.
* convolution, convolution_backward, _log_softmax, _log_softmax_backward_data, nll_loss_forward, nll_loss_backward, nll_loss2d_forward, nll_loss2d_backward, copy_
* Extends the recognition logic and metadata for handling inplace transformations, optional tensors, ints, lists and dropped args.
* The kernel_calls generated by test_conv_nllloss_grads.py now convert to ATen.
* The result *almost* comes out as a pure tensor program with the exception of the copy_ op, which I will do some followup work to deal with.
* More progress on #97
2020-11-04 14:36:59 -08:00
Sean Silva 57e58b9272 [RefBackend] Use upstream func-bufferize pass.
Now, the only bufferization we have left is lowering tensor constants to
memref, which will hopefully proceed soon after Rahul's new
std.global_memref lands + the lowering to LLVM IR. Then I'll port
LowerConstantTensorsToMemref to upstream and we'll be 100% upstream
bufferization, except for our local TCP dialect (which will probably go
away and be replaced by std elementwise + linalg named ops on tensors :)
).
2020-11-02 17:38:33 -08:00
Sean Silva f9c2f8eb0d [RefBackend] Use upstream SCF bufferization pass. 2020-10-30 18:12:41 -07:00
Sean Silva 0761df9f58 Bump llvm-project to 72ddd559b8aafef402091f8e192e025022e4ebef
- Fixup to OpBuilderDAG
- Update for affine map naming
2020-10-30 18:12:41 -07:00
Aaron J Arthurs 29c715b6b1 Add TCP mul test 2020-10-30 15:11:52 -07:00
Stella Laurenzo c08935a418 Rewrite ATen ODS code generator to be based on new op registry and new signature recognition system.
* Deletes prior code generator from previous attempt (moved some of it into this one).
* Renames old generated tablegen source to "Legacy".
* Generates ODS and import rules for most binary and unary arithmetic ops.
* Removes old generated ops and integration tests that were testing details of the prior setup.
2020-10-28 10:37:37 -07:00
Aaron J Arthurs 94ea6f7c92 [RefBackend] Support element-wise multiply op
Register the following for the multiply op:
- tcf.mul
- tcp.mul
- TCP->TCP lowering
- Shape transfer, broadcasted multiplicands
- Lower to standard `MulFOp` op
2020-10-27 19:41:23 -07:00
Stella Laurenzo 510f226df2 Expose signature metadata to ops and implement ATenRecognizeKernelsPass pass.
* Two op interfaces, one for querying instance metadata and one for getting static data needed to construct an op from a generic form.
* For torch.generic_kernel ops, metadata is splatted in during capture from Torch (it comes from the op registry, which will work for either device capture or graph import).
* Moved the 'add' out of the generated set so I can experiment on it. It implements the TorchBuildableKernelOpInterface interface which provides its metadata.
* The ATenRecognizeKernelsPass pass generically lowers from a torch.generic_kernel to recognized ops that implement the TorchBuildableKernelOpInterface, handling the various types of transformations that we allow at this stage.
2020-10-26 20:31:45 -07:00
Sean Silva 14470f9ff6 [RefBackend] Use upstream std bufferization.
It now subsumes the one we had.
2020-10-21 16:46:56 -07:00
Stella Laurenzo 029815152e Add remaining pieces to capture full example models.
* Adds Basicpy List, Tuple, Dict types and plumbs through C API.
* Started debugging the issues around aten::conv2d capture, but a PyTorch bug is suspected.
* Was able to manually verify that the basic conv2d forward test captures correctly with a workaround.
* Need to resolve some printing issues upstream and move these tests to an integration test target (they take ~seconds to run).
2020-10-19 22:16:59 -07:00