* IREE doesn't have proper install support, so there is some temporary hoaky hacking in our CMakeLists.txt to shuttle some symlinks around.
* Reworked the original numpy e2e with IREE test to pipe through iree-translate.
* Removed all of the C++-level dependencies.
* Will generalize and apply to the PyTorch backend in a followup.
This involved adding a `tcp.splatted` op to splat a dynamically sized
init tensor. See rationale in TCPOps.td docs.
One interesting observation is that when lowering tcf.matmul to
linalg.matmul, we need to both 1) create the error checks and 2)
calculate a shape transfer function to create the init tensors.
Previously, 2) was deferred to bufferizing tcp.matmul later. I'm not
sure if this is a conflation of concerns or not. For now, it's not a big
burden.
* Conversions are very simple, suporting mul, maximum and add (alpha=1 only).
* Example added with pass pipeline needed to run.
* Much missing off of the golden path but sufficient for such simple cases.
* Need to have a dag of shared library deps in order to interop across python extensions (as presented in ODM).
* Introduced add_npcomp_library and friends to mirror the MLIR setup.
* Adds a libNPCOMP.so shared library.
* Redirects tools and extensions to link against libNPCOMP.so (instead of static libs).
* Moves all libraries to lib/, all binaries to bin/ and all python extensions to python/. The invariant is that the rpaths are setup to have a one level directory structure.
* Reworks the _torch_mlir extension to build like the others (still need to come up with a consolidated rule to do this instead of open coded).
* Includes an upstream version bump to pick up needed changes.
Sizes with dynamic linking (stripped, release, asserts enabled):
libNPCOMP.so: 43M (includes much of the underlying LLVM codegen deps)
libMLIR.so: 31M
_npcomp.so: 1.6M (python extension)
_torch_mlir.so: 670K (python extension)
npcomp-capi-ir-test: 6.3K
npcomp-opt: 351K
npcomp-run-mlir: 461K
mnist-playground: 530K
Still more can be done to normalize and optimize but this gets us structurally to the starting point.
It was previously going through this awkward route that prematurely
created linalg.generic ops, which was an annoying layering problem since
we can't compute a shape transfer function for linalg.generic in the
general case. Now we pass it through the same path as tcp.matmul, with
the shape transfer function being defined for tcp.add.
This also removed the need for TCPToLinalg (now deleted). The equivalent
of that is happening in lower-shaped-results-to-memref. One interesting
outcome of this: we're basically using linalg as a "Buffer TCP". We
might want to look into using named structured ops for more of TCP, but
that would be a big velocity hit since then any change to the ODS /
verification for those ops would be a change to the upstream structured
op ODS generator. After we have more experience defining this manually,
we should re-evaluate rebasing TCP on generated named linalg ops.
* llvm-project: b5924a8e27536d19dd5c4d302db29fb6163d5faa
* mhlo: 848ca244d20f045b7921da55a98a04d95ef94f0e
* Multiple breakages that need to be fixed.
Fixes:
* Refactor dialect registration
* Remove all kindof methods (Casting functionality has been added upstream and is implicitly
available, see https://llvm.discourse.group/t/removing-kinds-from-attributes-and-types/1547.)
* Update dialect registration to comply with https://reviews.llvm.org/D85495.
* Remove type kinds and update some changed dialect signatures.
* Upgrade ATen dialect to match upstream needs.
* Move dialect registration to tablegen.
* Register the ListType in tablegen.
* Change dialect initialization signature.
* Use TypeSwitch in MlirIr location printer.
* Remove global registry depends from npcomp-opt.
* Change LowerToLLVM to pass an MLIRContext vs an LLVMDialect for type creation.
* Remove dep on MLIREDSCInterface that is removed upstream.
* Thread through the DialectRegistry for opt and python-like tools.
* Modernize pass registration (This was forced because the GEN_PASS_REGISTRATION code now generates inline functions vs literal pass registration statements)
Co-authored-by: Marius Brehler <marius.brehler@iml.fraunhofer.de>
* Conversions to std for numeric binary expressions, numeric to_boolean, and numeric comparisons.
* Added folders to constant ops to comply with requirements of the pass system.
* Extended the frontend with parameter/result annotation processing for primitives (can specify types for function arguments).
* Added (empty) directory/sources for IREEVM conversions. These are only enabled if IREE is enabled.