// RUN: torch-mlir-opt <%s -convert-torch-to-linalg -canonicalize -split-input-file -verify-diagnostics | FileCheck %s // CHECK-LABEL: func.func @torch.aten.permute( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[64,32,16,8,4],f32>) -> !torch.vtensor<[64,8,4,32,16],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[64,32,16,8,4],f32> -> tensor<64x32x16x8x4xf32> // CHECK: %[[VAL_2:.*]] = tensor.empty() : tensor<64x8x4x32x16xf32> // CHECK: %[[VAL_3:.*]] = linalg.transpose ins(%[[VAL_1]] : tensor<64x32x16x8x4xf32>) outs(%[[VAL_2]] : tensor<64x8x4x32x16xf32>) permutation = [0, 3, 4, 1, 2] // CHECK: %[[VAL_4:.*]] = torch_c.from_builtin_tensor %[[VAL_3]] : tensor<64x8x4x32x16xf32> -> !torch.vtensor<[64,8,4,32,16],f32> // CHECK: return %[[VAL_4]] : !torch.vtensor<[64,8,4,32,16],f32> // CHECK: } func.func @torch.aten.permute(%arg0: !torch.vtensor<[64,32,16,8,4],f32>) -> !torch.vtensor<[64,8,4,32,16],f32> { %int0 = torch.constant.int 0 %int3 = torch.constant.int 3 %int4 = torch.constant.int 4 %int1 = torch.constant.int 1 %int2 = torch.constant.int 2 %0 = torch.prim.ListConstruct %int0, %int3, %int4, %int1, %int2 : (!torch.int, !torch.int, !torch.int, !torch.int, !torch.int) -> !torch.list %1 = torch.aten.permute %arg0, %0 : !torch.vtensor<[64,32,16,8,4],f32>, !torch.list -> !torch.vtensor<[64,8,4,32,16],f32> return %1 : !torch.vtensor<[64,8,4,32,16],f32> } // ----- // CHECK-LABEL: func.func @torch.aten.permute$rank0( // CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[],f32>) -> !torch.vtensor<[],f32> { // CHECK: %[[VAL_1:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[],f32> -> tensor // CHECK: %[[VAL_2:.*]] = torch_c.from_builtin_tensor %[[VAL_1]] : tensor -> !torch.vtensor<[],f32> // CHECK: return %[[VAL_2]] : !torch.vtensor<[],f32> // CHECK: } func.func @torch.aten.permute$rank0(%arg0: !torch.vtensor<[],f32>) -> !torch.vtensor<[],f32> { %0 = torch.prim.ListConstruct : () -> !torch.list %1 = torch.aten.permute %arg0, %0 : !torch.vtensor<[],f32>, !torch.list -> !torch.vtensor<[],f32> return %1 : !torch.vtensor<[],f32> }