// RUN: torch-mlir-opt <%s -split-input-file -verify-diagnostics // ----- torch.class_type @c {} %0 = torch.nn_module { // expected-error @+1 {{'func.func' op is not allowed inside 'torch.nn_module'}} func.func @f() } : !torch.nn.Module<"c"> // ----- torch.class_type @c {} %c0 = torch.constant.int 0 // expected-error @+1 {{number of 'torch.slot's in a 'torch.nn_module' must match number of 'torch.attr's in the corresponding 'torch.class_type'}} %0 = torch.nn_module { torch.slot "f", %c0 : !torch.int } : !torch.nn.Module<"c"> // ----- torch.class_type @c { // expected-note @+1 {{see torch.attr at corresponding index 0 here}} torch.attr "g" : !torch.int } %c0 = torch.constant.int 0 %0 = torch.nn_module { // expected-error @+1 {{'torch.slot' op is expected to match type and name of '"torch.attr"() <{name = "g", type = !torch.int}> : () -> ()}} torch.slot "f", %c0 : !torch.int } : !torch.nn.Module<"c"> // ----- torch.class_type @c { // expected-error @+1 {{'func.func' op is not allowed inside `torch.class_type`}} func.func @f() } // ----- // expected-error @+1 {{has duplicate attr/method with name 'a'}} torch.class_type @c { // expected-note @+1 {{see first conflicting attr/method here}} torch.attr "a" : !torch.int // expected-note @+1 {{see second conflicting attr/method here}} torch.attr "a" : !torch.int } // ----- torch.class_type @c { // expected-error @+1 {{'@invalidSym' does not reference a valid function}} torch.method "f", @invalidSym } // ----- torch.class_type @c { // expected-error @+1 {{'@f' must reference a private function}} torch.method "f", @f } func.func @f(%arg0: !torch.nn.Module<"c">) { return } // ----- torch.class_type @c { // expected-error @+1 {{'@f' must reference a function that is defined (not merely declared)}} torch.method "f", @f } func.func private @f(%arg0: !torch.nn.Module<"c">) // ----- func.func private @f() { return } torch.class_type @c { // expected-error @+1 {{the referenced function 'f' must have a first argument of type '!torch.nn.Module<"c">'}} torch.method "f", @f } // ----- func.func private @f(%arg0: !torch.nn.Module<"other_c">) { return } torch.class_type @c { // expected-error @+1 {{the referenced function 'f' must have a first argument of type '!torch.nn.Module<"c">'}} torch.method "f", @f } // ----- // expected-error @+1 {{'a' does not reference a valid class type}} %m = torch.nn_module {} : !torch.nn.Module<"a"> // ----- // expected-error @+1 {{'torch.type_bound' must be attached to an argument of !torch.tensor/!torch.vtensor type}} func.func private @f(%arg0: i32 {torch.type_bound = !torch.tensor<*,f32>}) // ----- // expected-error @+1 {{'torch.type_bound' must be TypeAttr}} func.func private @f(%arg0: i32 {torch.type_bound = 1}) // ----- // expected-error @+1 {{'torch.type_bound' must be of !torch.tensor/!torch.vtensor type}} func.func private @f(%arg0: i32 {torch.type_bound = i32}) // ----- func.func @derefine(%arg0: !torch.optional) -> !torch.tensor { // expected-error @+1 {{operand type '!torch.optional' and result type '!torch.tensor' are cast incompatible}} %0 = torch.derefine %arg0 : !torch.optional to !torch.tensor return %0 : !torch.tensor } // ----- func.func @torch.prim.unchecked_cast$invalid_types(%arg0: !torch.tensor) -> !torch.optional { // expected-error @+1 {{operand type '!torch.tensor' and result type '!torch.optional' are cast incompatible}} %0 = torch.prim.unchecked_cast %arg0 : !torch.tensor -> !torch.optional return %0 : !torch.optional } // ----- // expected-error @+1 {{invalid dtype 'tuple<>' for !torch.tensor type}} func.func private @tensor.invalid_dtype() -> !torch.tensor<*,tuple<>> // ----- func.func @torch.tensor() { // Incompatible shape. // expected-error@+1 {{must be Multi-dimensional array modeling Torch's Tensor type, but got}} %0 = torch.tensor.literal(dense<42.0> : tensor<3x2xf32>) : !torch.vtensor<[],f32> return } // ----- func.func @torch.tensor() { // Incompatible dtype. // expected-error@+1 {{must be Multi-dimensional array modeling Torch's Tensor type, but got}} %0 = torch.tensor.literal(dense<42.0> : tensor) : !torch.vtensor<[],f64> return } // ----- func.func @torch.tensor() { // Incompatible type. // expected-error@+1 {{must be Multi-dimensional array modeling Torch's Tensor type, but got}} %0 = torch.tensor.literal(dense<42.0> : tensor) : i1 return } // ----- func.func @torch.prim.ListConstruct() { %int2 = torch.constant.int 2 // expected-error@+1 {{operand types should have the same type as the list contained type}} torch.prim.ListConstruct %int2 : (!torch.int) -> !torch.list return } // ----- func.func @torch.overwrite.tensor.contents(%arg0: !torch.vtensor<[1],f32>, %arg1: !torch.vtensor<[?],f32>) -> !torch.vtensor<[1],f32> { %0 = torch.copy.to_tensor %arg0 : !torch.tensor<[1],f32> // expected-error@+1 {{'torch.overwrite.tensor.contents' op failed to verify that overwritten tensor type is corresponding !torch.tensor of value tensor type}} torch.overwrite.tensor.contents %arg1 overwrites %0 : !torch.vtensor<[?],f32>, !torch.tensor<[1],f32> %1 = torch.copy.to_vtensor %0 : !torch.vtensor<[1],f32> return %1 : !torch.vtensor<[1],f32> } // ----- // There must be only one module initialize. torch.global_slot.module_initializer { torch.initialize.global_slots [ ] } // expected-error @+1 {{there must be only one global slot initializer}} torch.global_slot.module_initializer { torch.initialize.global_slots [ ] } // ----- // Initialized slot missing, or or non-existent slots initialized. // expected-note @+1 {{missing global slot initializer for @slot0}} torch.global_slot @slot0 : !torch.int // expected-note @+1 {{missing global slot initializer for @slot1}} torch.global_slot @slot1 : !torch.int torch.global_slot.module_initializer { %0 = torch.constant.int 1 %1 = torch.tensor.literal(dense<0.0> : tensor) : !torch.tensor %2 = torch.tensor.literal(dense<0.0> : tensor) : !torch.tensor<[],unk> // expected-error @below {{must have one initializer for each global slot in the module}} // expected-note @below {{unexpected global slot initializer for non-existent global slot @nonexistent_slot0}} // expected-note @below {{unexpected global slot initializer for non-existent global slot @nonexistent_slot1}} torch.initialize.global_slots [ @nonexistent_slot0(%0 : !torch.int) @nonexistent_slot1(%0 : !torch.int) ] } // ----- // Duplicate initialization of global slot. torch.global_slot @slot0 : !torch.int torch.global_slot.module_initializer { %0 = torch.constant.int 1 // expected-error @+1 {{duplicate initialization of global slot: @slot0}} torch.initialize.global_slots [ @slot0(%0 : !torch.int) @slot0(%0 : !torch.int) ] } // ----- // Subtyping checks. torch.global_slot @tensor : !torch.tensor torch.global_slot @initialized_with_refined : !torch.tensor torch.global_slot @error_initialized_with_derefined : !torch.tensor<[],unk> torch.global_slot.module_initializer { %1 = torch.tensor.literal(dense<0.0> : tensor) : !torch.tensor %2 = torch.tensor.literal(dense<0.0> : tensor) : !torch.tensor<[],unk> // expected-error @below {{initial value for global slot @error_initialized_with_derefined has type '!torch.tensor' which is not within the bound '!torch.tensor<[],unk>'}} torch.initialize.global_slots [ @tensor(%1 : !torch.tensor) @initialized_with_refined(%2 : !torch.tensor<[],unk>) @error_initialized_with_derefined(%1 : !torch.tensor) ] } // ----- // Restricted set of ops in the module initializer. torch.global_slot @tensor : !torch.tensor torch.global_slot.module_initializer { %0 = torch.tensor.literal(dense<0.0> : tensor) : !torch.tensor // expected-error @+1 {{'torch.aten.mul.Tensor' op is not allowed in a module initializer}} %1 = torch.aten.mul.Tensor %0, %0 : !torch.tensor, !torch.tensor -> !torch.tensor torch.initialize.global_slots [ @tensor(%1 : !torch.tensor) ] } // ----- func.func @torch.tensor_static_info_cast$shape_mismatch(%arg0: !torch.vtensor<[],unk>) -> !torch.vtensor<[?],unk> { // expected-error@+1 {{'torch.tensor_static_info_cast' op operand type '!torch.vtensor<[],unk>' and result type '!torch.vtensor<[?],unk>' are cast incompatible}} %0 = torch.tensor_static_info_cast %arg0 : !torch.vtensor<[],unk> to !torch.vtensor<[?],unk> return %0 : !torch.vtensor<[?],unk> } // ----- func.func @torch.tensor_static_info_cast$dtype_mismatch(%arg0: !torch.vtensor<*,f32>) -> !torch.vtensor<*,f64> { // expected-error@+1 {{'torch.tensor_static_info_cast' op operand type '!torch.vtensor<*,f32>' and result type '!torch.vtensor<*,f64>' are cast incompatible}} %0 = torch.tensor_static_info_cast %arg0 : !torch.vtensor<*,f32> to !torch.vtensor<*,f64> return %0 : !torch.vtensor<*,f64> } // ----- func.func @torch.permute$test_changing_rank (%arg0: !torch.vtensor<[1,2,3],f32>) -> !torch.vtensor<[1,2,3,4],f32> { %int0 = torch.constant.int 0 %int1 = torch.constant.int 1 %int2 = torch.constant.int 2 %perm = torch.prim.ListConstruct %int1, %int2, %int0 : (!torch.int, !torch.int, !torch.int) -> !torch.list // expected-error@+1 {{expected input and output tensors to have same rank, but 3 != 4}} %3 = torch.aten.permute %arg0, %perm : !torch.vtensor<[1,2,3],f32>, !torch.list -> !torch.vtensor<[1,2,3,4],f32> return %3 : !torch.vtensor<[1,2,3,4],f32> } // ----- func.func @torch.permute$test_permutation_too_short (%arg0: !torch.vtensor<[1,2,3],f32>) -> !torch.vtensor<[1,2,3],f32> { %int0 = torch.constant.int 0 %int1 = torch.constant.int 1 %perm = torch.prim.ListConstruct %int0, %int1 : (!torch.int, !torch.int) -> !torch.list // expected-error@+1 {{The permutation has 2 elements, the output has rank 3}} %3 = torch.aten.permute %arg0, %perm : !torch.vtensor<[1,2,3],f32>, !torch.list -> !torch.vtensor<[1,2,3],f32> return %3 : !torch.vtensor<[1,2,3],f32> } // ----- func.func @torch.permute$duplicate_index_in_permutation (%arg0: !torch.vtensor<[1,2,3],f32>) -> !torch.vtensor<[2,3,1],f32> { %int1 = torch.constant.int 1 %int2 = torch.constant.int 2 %perm = torch.prim.ListConstruct %int1, %int2, %int1 : (!torch.int, !torch.int, !torch.int) -> !torch.list // expected-error@+1 {{'torch.aten.permute' op has a duplicate dimension (1) in its permutation}} %3 = torch.aten.permute %arg0, %perm : !torch.vtensor<[1,2,3],f32>, !torch.list -> !torch.vtensor<[2,3,1],f32> return %3 : !torch.vtensor<[2,3,1],f32> } // ----- func.func @torch.permute$incorrect_output_shape (%arg0: !torch.vtensor<[1,2,3],f32>) -> !torch.vtensor<[3,1,2],f32> { %int0 = torch.constant.int 0 %int1 = torch.constant.int 1 %int2 = torch.constant.int 2 %none = torch.constant.none %perm = torch.prim.ListConstruct %int1, %int2, %int0 : (!torch.int, !torch.int, !torch.int) -> !torch.list // expected-error@+1 {{'torch.aten.permute' op has a permutation which is not compatible with the input and output shapes. The input shape in dimension 1 is 2, and the output shape in dimension 0 is 3 : they should be the same with this permutation.}} %3 = torch.aten.permute %arg0, %perm : !torch.vtensor<[1,2,3],f32>, !torch.list -> !torch.vtensor<[3,1,2],f32> return %3 : !torch.vtensor<[3,1,2],f32> } // ----- func.func @torch.permute$invalid_index_in_permutation (%arg0: !torch.vtensor<[1,2,3],f32>) -> !torch.vtensor<[1,2,3],f32> { %int0 = torch.constant.int 0 %int1 = torch.constant.int 1 %int7 = torch.constant.int 7 %perm = torch.prim.ListConstruct %int0, %int1, %int7 : (!torch.int, !torch.int, !torch.int) -> !torch.list // expected-error@+1 {{observed invalid index in permutation (7) for input tensor of rank 3.}} %3 = torch.aten.permute %arg0, %perm : !torch.vtensor<[1,2,3],f32>, !torch.list -> !torch.vtensor<[1,2,3],f32> return %3 : !torch.vtensor<[1,2,3],f32> } // ----- #SV = #sparse_tensor.encoding<{ map = (d0) -> (d0 : compressed) }> // expected-error @+1 {{dimension-rank mismatch between encoding and tensor shape: 1 != 2}} func.func @foo(%arg0: !torch.vtensor<[64,64],f32,#SV>) -> !torch.vtensor<[64,64],f32,#SV> { return %arg0 : !torch.vtensor<[64,64],f32,#SV> } // ----- // expected-error @+1 {{invalid sparsity encoding attribute}} func.func private @tensor.sparse() -> !torch.vtensor<[64,64],f32,12345> // ----- func.func @torch.symbolic_int$no_shape_symbols(%arg0: !torch.vtensor<[?],f32>) -> !torch.vtensor<[?],f32> { %0 = torch.symbolic_int "s0" {min_val = 3, max_val = 6} : !torch.int // expected-error @+1 {{op requires equal number of shape symbol args and symbol args to the attached affine map, since they are 1:1 mapped}} torch.bind_symbolic_shape %arg0, [], affine_map<()[s0] -> (s0)> : !torch.vtensor<[?],f32> return %arg0 : !torch.vtensor<[?],f32> } // ----- // Verifier should not fail here since the op does not require shapeSymbols. func.func @torch.symbolic_int$no_shape_symbols_no_symbols_in_map(%arg0: !torch.vtensor<[?],f32>) -> !torch.vtensor<[?],f32> { torch.bind_symbolic_shape %arg0, [], affine_map<()[] -> (1)> : !torch.vtensor<[?],f32> return %arg0 : !torch.vtensor<[?],f32> } // ----- func.func @torch.symbolic_int$no_shape_symbols(%arg0: !torch.vtensor<[?],f32>) -> !torch.vtensor<[?],f32> { %int0 = torch.constant.int 0 // expected-error @+1 {{shape symbol must be produced by a SymbolicIntOp}} torch.bind_symbolic_shape %arg0, [%int0], affine_map<()[s0] -> (s0)> : !torch.vtensor<[?],f32> return %arg0 : !torch.vtensor<[?],f32> }