import argparse import hashlib import importlib.util import logging import os import re import subprocess import warnings from collections import defaultdict from dataclasses import dataclass from pathlib import Path from shutil import which from textwrap import dedent, indent # PyTorch's LTC backend autogen script import torchgen import torchgen.dest.lazy_ir import torchgen.gen_lazy_tensor import yaml from torchgen.api.lazy import LazyIrSchema, setValueT from torchgen.api.types import BaseCppType from torchgen.dest import GenLazyShapeInferenceDefinition from torchgen.gen import get_grouped_native_functions, parse_native_yaml from torchgen.gen_backend_stubs import parse_backend_yaml TORCH_DIR = Path(importlib.util.find_spec("torch").origin).resolve().parent.parent TORCH_INCLUDE_DIR = TORCH_DIR.joinpath("torch", "include") if not TORCH_INCLUDE_DIR.is_dir(): TORCH_INCLUDE_DIR = TORCH_DIR TORCHGEN_DIR = Path(torchgen.__path__[0]).resolve() TORCH_MLIR_DIR = Path(__file__).resolve().parent.parent def reindent(text, prefix=""): return indent(dedent(text), prefix) @dataclass(frozen=True) class GenMlirLazyIr(torchgen.dest.GenLazyIR): def isOptionalCType(self, arg): return str(type(arg)) == "" def lowering_function(self, schema: LazyIrSchema): signature = "TorchMlirOpVector Lower(TorchMlirFunction function, TorchMlirLoweringContext* loctx) const override" if schema.properties.LowerDeclOnly: return f"{signature};" elif not schema.properties.Lower: return "" emplace_arguments = [] for arg in schema.positional_args: if arg.is_lazy_value: if self.isOptionalCType(arg.lazy_type): emplace_arguments.append( f"has_{arg.name} ? loctx->GetOutputOp(operand(i++)) : nullptr" ) else: emplace_arguments.append("loctx->GetOutputOp(operand(i++))") else: emplace_arguments.append(f'"{arg.name}", {arg.name}') emplace_arguments_str = "\n ".join( f"arguments.emplace_back({a});" for a in emplace_arguments ) emplace_kwarg_values = [ f'"{t.name}", loctx->GetOutputOp(operand(i++))' for t in schema.keyword_values ] emplace_kwarg_scalars = [ f'"{t.name}", {t.name}' for t in schema.keyword_scalars ] emplace_kwarguments = "\n ".join( f"kwarguments.emplace_back({a});" for a in emplace_kwarg_values + emplace_kwarg_scalars ) # Only create this variable if it's used to avoid Wunused-variable operand_idx_counter = "size_t i = 0;" if "i++" in (emplace_arguments_str + emplace_kwarguments) else "" return reindent( f""" {signature} {{ PRINT_FUNCTION(); std::vector arguments; std::vector kwarguments; arguments.reserve({len(emplace_arguments)}); kwarguments.reserve({len(emplace_kwarg_values + emplace_kwarg_scalars)}); {operand_idx_counter} {emplace_arguments_str} {emplace_kwarguments} torch::lazy::TorchMlirOpVector {schema.aten_name}_out = torch::lazy::LowerTorchMlirBuiltin(function, op().op, shapes(), arguments, kwarguments); TORCH_CHECK_EQ({schema.aten_name}_out.size(), {len(schema.returns)}); return {schema.aten_name}_out; }} """, " ", ) class GenTorchMlirLTC: def __init__(self, binary_dir): self.script_path = Path(__file__).resolve() self.config_path = ( Path(__file__).resolve().parent.joinpath("autogen_ltc_backend.yaml") ) self.torch_ops_file = TORCH_MLIR_DIR.joinpath( # fmt: off "include", "torch-mlir", "Dialect", "Torch", "IR", "GeneratedTorchOps.td", # fmt: on ) assert self.torch_ops_file.exists() self.binary_dir = Path(binary_dir) assert self.binary_dir.is_dir(), f"Binary directory not found: {self.binary_dir}" self.source_yaml = self.binary_dir.joinpath("generated_native_functions.yaml") self.backend_path = TORCH_MLIR_DIR.joinpath( "python", "torch_mlir", "csrc", "base_lazy_backend" ) assert self.backend_path.is_dir() self.generated_path = self.binary_dir.joinpath( "python", "torch_mlir", "csrc", "base_lazy_backend", "generated" ) self.generated_path.mkdir(parents=True, exist_ok=True) # Create symlink to match doc structure generated_path = self.backend_path.joinpath("generated").resolve() if not generated_path.exists(): generated_path.symlink_to( os.path.relpath(self.generated_path, generated_path.parent), target_is_directory=True, ) self.tensor_class = "torch::lazy::LazyTensor" # Set the lazy value class setValueT(BaseCppType("torch::lazy", "Value")) def calculate_hash(self): m = hashlib.sha256() # Add file contents to hash for path in ( self.script_path, self.config_path, self.torch_ops_file, self.source_yaml, self.backend_path.joinpath("shape_inference.cpp"), TORCHGEN_DIR.joinpath("dest", "lazy_ir.py"), TORCHGEN_DIR.joinpath("api", "lazy.py"), TORCHGEN_DIR.joinpath("model.py"), ): if path.exists(): m.update(path.read_bytes()) return m.hexdigest().strip() def generate_native_functions(self): logging.info("Generating Native Functions Yaml") native_path = TORCHGEN_DIR.joinpath("packaged", "ATen", "native") native_yaml_path = native_path.joinpath("native_functions.yaml") tags_yaml_path = native_path.joinpath("tags.yaml") ts_native_yaml_path = TORCH_DIR.joinpath( "aten", "src", "ATen", "native", "ts_native_functions.yaml" ) ts_native_yaml = None if ts_native_yaml_path.exists(): ts_native_yaml = yaml.load(ts_native_yaml_path.read_text(), yaml.CLoader) else: logging.warning(f"Could not find `ts_native_functions.yaml` at {ts_native_yaml_path}") parsed_yaml = parse_native_yaml(native_yaml_path, tags_yaml_path) self.native_functions = parsed_yaml.native_functions self.backend_indices = parsed_yaml.backend_indices self.grouped_native_functions = get_grouped_native_functions( self.native_functions ) def get_native_function_name(f): func = f if hasattr(f, "func") else f.functional return str(func.func.name) self.native_functions = { get_native_function_name(f): f for f in self.native_functions } def get_opnames(ops): opnames = defaultdict(set) for op in ops: opname = op.split(".")[0] opnames[opname].add(op) return opnames aten_funcs = get_opnames( map(get_native_function_name, self.grouped_native_functions) ) with self.config_path.open() as f: config = yaml.load(f, yaml.CLoader) # List of unsupported ops in LTC autogen because of some error blacklist = set(config.get("blacklist", [])) # List of supported ops that we don't want to do the full codegen for # primarily view ops supported = set(config.get("supported", [])) # List of non-native ops to do IR codegen for non_native = config.get("non_native", []) # use ripgrep if available as its much faster if which("rg") is not None: cmd = ["rg", "-o", "-N", r"aten::[0-9a-zA-Z_\.]+"] else: cmd = ["grep", "-o", r"aten::[0-9a-zA-Z_\.]\+"] torch_ops = set( op[6:] for op in subprocess.check_output( cmd + [str(self.torch_ops_file)], encoding="utf-8", ) .strip() .split(os.linesep) ) torch_opnames = get_opnames(torch_ops) # process ops list ops = set() composite_implicit = set() for op in torch_ops: if op not in self.native_functions: continue func = self.native_functions[op] base = func.func.name.name.base if base in blacklist or op in blacklist: continue if base in supported or op in supported: continue # Blacklist new_/_like ops since they are non-differentiable. if any(o.startswith("new_") or o.endswith("_like") for o in (base, op)): continue if func.has_composite_implicit_autograd_kernel: composite_implicit.add(op) elif func.func.name.name.inplace: for autogen in func.autogen: if "functional" in autogen.overload_name: ops.add(str(autogen)) else: ops.add(op) skipped = set(torch_ops) - ops - supported - composite_implicit # List of ops autogen even if not explicitly supported by Torch-MLIR explicitly ops |= set(config.get("whitelist", [])) # Additional ops to support that are not supported by Torch-MLIR explicitly supported |= set(config.get("additional_ops", [])) self.ops = sorted(ops) with self.source_yaml.open("w") as f: source_yaml = { "backend": "Lazy", "cpp_namespace": "torch::lazy", "full_codegen": self.ops, "supported": sorted(supported), "non_native": non_native, } yaml.dump(source_yaml, f, default_flow_style=False) f.write( dedent( """ # Composite implicit ops (supported by Torch-MLIR but not differentiable) {composite_implicit} # Skipped ops (supported by Torch-MLIR but no equivalent native function) {skipped} """ ).format( composite_implicit=os.linesep.join( f"# - {op}" for op in sorted(composite_implicit) ), skipped=os.linesep.join(f"# - {op}" for op in sorted(skipped)), ) ) if ts_native_yaml: ts_full_codegen = set(ts_native_yaml["full_codegen"]) ts_supported = set(ts_native_yaml["supported"]) mlir_full_codegen = set(self.ops) if ts_full_codegen - mlir_full_codegen: logging.debug( "Full Codegen ops supported by the TorchScript backend " "but not by the Torch-MLIR backend:\n {}".format( "\n ".join(sorted(ts_full_codegen - mlir_full_codegen)) ) ) if mlir_full_codegen - ts_full_codegen: logging.debug( "Full Codegen ops supported by the Torch-MLIR backend " "but not by the TorchScript backend:\n {}".format( "\n ".join(sorted(mlir_full_codegen - ts_full_codegen)) ) ) if ts_supported - supported: logging.debug( "Ops supported by the TorchScript backend " "but not by the Torch-MLIR backend:\n {}".format( "\n ".join(sorted(ts_supported - supported)) ) ) if supported - ts_supported: logging.debug( "Ops supported by the Torch-MLIR backend " "but not by the TorchScript backend:\n {}".format( "\n ".join(sorted(supported - ts_supported)) ) ) def generate_shape_inference(self): parsed_backend_yaml = parse_backend_yaml( self.source_yaml, self.grouped_native_functions, self.backend_indices, ) backend_index = self.backend_indices[parsed_backend_yaml.backend_key] shape_gen = GenLazyShapeInferenceDefinition(backend_index, self.tensor_class) sig_re = re.compile( r"std::vector\s+(?P\w+)\((?P[^\)]+)\)" ) global_signatures = {} def extract_signatures(text): signatures = set() for name, args in sig_re.findall(text): signature = re.sub(r"\s+", "", f"{name}({args})") global_signatures[signature] = (name, args) signatures.add(signature) return signatures shape_inference_decls = [] for op in self.ops: f = self.native_functions[op] shape_sig = shape_gen(f) shape_inference_decls.extend(shape_sig) self.generated_path.joinpath("shape_inference.h").write_text( dedent( """ // This file contains autogenerated Lazy Shape Inference declarations // for ops that dont have a corresponding structured kernel or shape definition #include #include #include #include #include #include #include namespace torch {{ namespace lazy {{ {} }} // namespace lazy }} // namespace torch """ ).format(os.linesep.join(sorted(shape_inference_decls))) ) shape_inference_decls = extract_signatures( self.generated_path.joinpath("shape_inference.h").read_text() ) assert len(shape_inference_decls) > 0 upstream_shape_inference_decls = extract_signatures( TORCH_INCLUDE_DIR.joinpath( "torch", "csrc", "lazy", "core", "shape_inference.h" ).read_text() ) assert len(upstream_shape_inference_decls) > 0 shape_inference_defs = extract_signatures( self.backend_path.joinpath("shape_inference.cpp").read_text() ) assert len(shape_inference_decls) > len(shape_inference_defs) missing_defs = ( shape_inference_decls - upstream_shape_inference_decls - shape_inference_defs ) if missing_defs: self.generated_path.joinpath("shape_inference.cpp").write_text( dedent( """ // This file contains autogenerated Lazy Shape Inference placeholders // for ops that dont have a corresponding structured kernel or shape definition #include "shape_inference.h" #include "torch_mlir/csrc/base_lazy_backend/utils/exception.h" namespace torch {{ namespace lazy {{ {} }} // namespace lazy }} // namespace torch """ ).format( "".join( dedent( f""" std::vector {name}({args}) {{ UNIMPLEMENTED_FUNCTION_ERROR(); }} """ ) for name, args in map( global_signatures.get, sorted(missing_defs) ) ) ) ) unnecessary_defs = shape_inference_defs - shape_inference_decls if unnecessary_defs: unnecessary_defs = "\n\t".join( f"{name}({args})" for name, args in map(global_signatures.get, unnecessary_defs) ) warnings.warn( f"Unnecessary shape inference definitions found for:\n\t{unnecessary_defs}" ) def generate_backend(self): logging.info("Running Lazy Tensor Autogen") # No fallback code allowed def gen_fallback_code(*args, **kwargs): return "" torchgen.dest.lazy_ir.gen_fallback_code = gen_fallback_code torchgen.gen_lazy_tensor.run_gen_lazy_tensor( backend_name="TorchMlir", aten_path=str(TORCHGEN_DIR.joinpath("packaged", "ATen")), source_yaml=str(self.source_yaml), output_dir=str(self.generated_path), dry_run=False, impl_path=str(self.backend_path.joinpath("mlir_native_functions.cpp")), node_base="torch::lazy::TorchMlirNode", node_base_hdr=str(self.backend_path.joinpath("mlir_node.h")), tensor_class=self.tensor_class, tensor_class_hdr="torch/csrc/lazy/core/tensor.h", shape_inference_hdr=str(self.generated_path.joinpath("shape_inference.h")), lazy_ir_generator=GenMlirLazyIr, ) def __call__(self): self.generate_native_functions() self.generate_shape_inference() self.generate_backend() def main(args): generator = GenTorchMlirLTC(args.binary_dir) hash_file = generator.binary_dir.joinpath("generated_backend.hash") prev_hash = None if hash_file.exists(): prev_hash = hash_file.read_text().strip() new_hash = generator.calculate_hash() if args.force or new_hash != prev_hash: generator() hash_file.write_text(new_hash) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "-b", "--binary_dir", type=str, default=os.getenv( "TORCH_MLIR_BINARY_DIR", TORCH_MLIR_DIR.joinpath("build"), ), ) parser.add_argument( "-f", "--force", action="store_true", ) parser.add_argument( "-d", "--debug", help="Print lots of debugging statements", action="store_const", dest="loglevel", const=logging.DEBUG, default=logging.WARNING, ) parser.add_argument( "-v", "--verbose", help="Be verbose", action="store_const", dest="loglevel", const=logging.INFO, ) args = parser.parse_args() logging.basicConfig(level=args.loglevel) main(args)