//===------------------------------------------------------------*- C++ -*-===// // // This file is licensed under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // Also available under a BSD-style license. See LICENSE. // //===----------------------------------------------------------------------===// #include "mlir/IR/DialectResourceBlobManager.h" #include "torch-mlir/Conversion/TorchOnnxToTorch/Patterns.h" #include "torch-mlir/Conversion/TorchOnnxToTorch/Utils.h" #include "torch-mlir/Dialect/Torch/IR/TorchOps.h" #include "torch-mlir/Dialect/Torch/Utils/Utils.h" #include "llvm/Support/FormatVariadic.h" using namespace mlir; using namespace mlir::torch; using namespace mlir::torch::onnx_c; static LogicalResult createTorchTransposeOp(ConversionPatternRewriter &rewriter, Location loc, Value input, int64_t dimA, int64_t dimB, Value &transposed) { Type transposedType; if (failed(getTransposedType(cast(input.getType()), dimA, dimB, transposedType))) return failure(); Value cstDimA = rewriter.create( loc, rewriter.getI64IntegerAttr(dimA)); Value cstDimB = rewriter.create( loc, rewriter.getI64IntegerAttr(dimB)); transposed = rewriter.create( loc, transposedType, input, cstDimA, cstDimB); return success(); } // Simple rewrites for the default domain. // See: https://onnx.ai/onnx/operators/ // For operators that are effectively version invariant, we register with // sinceVersion==1. We interpret this to include the following spec // diffs that are irrelevant to this level of lowering: // * Supported element types. // * Limited broadcasting to full broadcasting support. // // There are a lot of spec revisions that basically generalized elementwise // to be more normal and a direct translation vs a special case. This // results in a lot of ONNX test cases that all reduce to the exact same // thing here, so we simplify. void mlir::torch::onnx_c::populateDefaultDomainAtoF( OnnxCustomOpConversionPattern &patterns) { patterns.onOp("Abs", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value operand; if (binder.tensorOperand(operand) || binder.tensorResultType(resultType)) return failure(); rewriter.replaceOpWithNewOp( binder.op, resultType, operand); return success(); }); // Add became forward compatible with Torch in version 7. patterns.onOp("Add", 7, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value lhs, rhs; if (binder.tensorOperands(lhs, rhs) || binder.tensorResultType(resultType)) return failure(); Value const1 = rewriter.create( binder.getLoc(), rewriter.getType(), rewriter.getIntegerAttr(rewriter.getIntegerType(64), 1)); rewriter.replaceOpWithNewOp( binder.op, resultType, lhs, rhs, const1); return success(); }); // TODO: AffineGrid patterns.onOp("And", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value lhs, rhs; if (binder.tensorOperands(lhs, rhs) || binder.tensorResultType(resultType)) return failure(); rewriter.replaceOpWithNewOp( binder.op, resultType, lhs, rhs); return success(); }); patterns.onOp( "ArgMax", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value operand; bool keepDims; int64_t axis; bool selectLastIndex; if (binder.tensorOperand(operand) || binder.tensorResultType(resultType) || binder.s64BoolAttr(keepDims, "keepdims", true) || binder.s64IntegerAttr(axis, "axis", 0) || binder.s64BoolAttr(selectLastIndex, "select_last_index", false)) return failure(); // ONNX allows negative axis. auto operandSizes = cast(operand.getType()).getSizes(); if (axis < 0) axis += operandSizes.size(); Value constAxis = rewriter.create( binder.getLoc(), rewriter.getType(), rewriter.getIntegerAttr(rewriter.getIntegerType(64), axis)); Value constKeepDims = rewriter.create( binder.getLoc(), rewriter.getType(), rewriter.getBoolAttr(keepDims)); if (selectLastIndex) { Value dims = createConstantIntList(binder, rewriter, {axis}); auto operandTy = dyn_cast(operand.getType()); operand = rewriter.create( binder.getLoc(), operandTy, operand, dims); Value argmax = rewriter.create( binder.getLoc(), resultType, operand, constAxis, constKeepDims); Value offset = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(operandSizes[axis] - 1)); Value alpha = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(1)); Value sub = rewriter.create( binder.getLoc(), resultType, argmax, offset, alpha); rewriter.replaceOpWithNewOp(binder.op, resultType, sub); return success(); } rewriter.replaceOpWithNewOp( binder.op, resultType, operand, constAxis, constKeepDims); return success(); }); patterns.onOp( "ArgMin", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value operand; bool keepDims; int64_t axis; bool selectLastIndex; if (binder.tensorOperand(operand) || binder.tensorResultType(resultType) || binder.s64BoolAttr(keepDims, "keepdims", true) || binder.s64IntegerAttr(axis, "axis", 0) || binder.s64BoolAttr(selectLastIndex, "select_last_index", false)) return failure(); // ONNX allows negative axis. auto operandSizes = cast(operand.getType()).getSizes(); if (axis < 0) axis += operandSizes.size(); Value constAxis = rewriter.create( binder.getLoc(), rewriter.getType(), rewriter.getIntegerAttr(rewriter.getIntegerType(64), axis)); Value constKeepDims = rewriter.create( binder.getLoc(), rewriter.getType(), rewriter.getBoolAttr(keepDims)); if (selectLastIndex) { Value dims = createConstantIntList(binder, rewriter, {axis}); auto operandTy = dyn_cast(operand.getType()); operand = rewriter.create( binder.getLoc(), operandTy, operand, dims); Value argmin = rewriter.create( binder.getLoc(), resultType, operand, constAxis, constKeepDims); Value offset = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(operandSizes[axis] - 1)); Value alpha = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(1)); Value sub = rewriter.create( binder.getLoc(), resultType, argmin, offset, alpha); rewriter.replaceOpWithNewOp(binder.op, resultType, sub); return success(); } rewriter.replaceOpWithNewOp( binder.op, resultType, operand, constAxis, constKeepDims); return success(); }); patterns.onOp("Asin", 7, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value operand; if (binder.tensorOperand(operand) || binder.tensorResultType(resultType)) return failure(); rewriter.replaceOpWithNewOp( binder.op, resultType, operand); return success(); }); patterns.onOp( "Asinh", 9, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value operand; if (binder.tensorOperand(operand) || binder.tensorResultType(resultType)) return failure(); // log(x + sqrt(x**2 + 1)) Value square = rewriter.create( binder.getLoc(), resultType, operand); Value cstOne = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(1)); Value add0 = rewriter.create( binder.getLoc(), resultType, square, cstOne, cstOne); Value sqrt = rewriter.create(binder.getLoc(), resultType, add0); Value add1 = rewriter.create( binder.getLoc(), resultType, operand, sqrt, cstOne); rewriter.replaceOpWithNewOp(binder.op, resultType, add1); return success(); }); patterns.onOp("Atan", 7, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value operand; if (binder.tensorOperand(operand) || binder.tensorResultType(resultType)) return failure(); rewriter.replaceOpWithNewOp( binder.op, resultType, operand); return success(); }); patterns.onOp( "Atanh", 9, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value operand; if (binder.tensorOperand(operand) || binder.tensorResultType(resultType)) return failure(); // 1/2 * log((1 + x) / (1 - x)) Value cstOne = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(1)); Value add = rewriter.create( binder.getLoc(), resultType, operand, cstOne, cstOne); Value neg = rewriter.create(binder.getLoc(), resultType, operand); Value sub = rewriter.create( binder.getLoc(), resultType, neg, cstOne, cstOne); Value div = rewriter.create( binder.getLoc(), resultType, add, sub); Value log = rewriter.create(binder.getLoc(), resultType, div); Value cstTwo = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(2)); rewriter.replaceOpWithNewOp( binder.op, resultType, log, cstTwo); return success(); }); patterns.onOp("Acos", 7, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value operand; if (binder.tensorOperand(operand) || binder.tensorResultType(resultType)) return failure(); rewriter.replaceOpWithNewOp( binder.op, resultType, operand); return success(); }); patterns.onOp( "Acosh", 9, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value operand; if (binder.tensorOperand(operand) || binder.tensorResultType(resultType)) return failure(); // log(x + sqrt(x**2 - 1)) Value square = rewriter.create( binder.getLoc(), resultType, operand); Value cstOne = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(1)); Value sub = rewriter.create( binder.getLoc(), resultType, square, cstOne, cstOne); Value sqrt = rewriter.create(binder.getLoc(), resultType, sub); Value add = rewriter.create( binder.getLoc(), resultType, operand, sqrt, cstOne); rewriter.replaceOpWithNewOp(binder.op, resultType, add); return success(); }); patterns.onOp("BatchNormalization", 15, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value input, weight, bias, runningMean, runningVar; bool training; float momentum, eps; if (binder.s64BoolAttr(training, "training_mode", 0)) return failure(); if (training) { // TODO: Add support for training = true return rewriter.notifyMatchFailure( binder.op, "unsupported conversion: training = true"); } if (binder.tensorOperandAtIndex(input, 0) || binder.tensorOperandAtIndex(weight, 1) || binder.tensorOperandAtIndex(bias, 2) || binder.tensorOperandAtIndex(runningMean, 3) || binder.tensorOperandAtIndex(runningVar, 4) || binder.f32FloatAttr(momentum, "momentum", 0.9f) || binder.f32FloatAttr(eps, "epsilon", 1e-05f) || binder.tensorResultType(resultType)) return failure(); Value cstFalse = rewriter.create( binder.getLoc(), false); Value cstMomentum = rewriter.create( binder.getLoc(), rewriter.getF64FloatAttr(momentum)); Value cstEps = rewriter.create( binder.getLoc(), rewriter.getF64FloatAttr(eps)); rewriter.replaceOpWithNewOp( binder.op, resultType, input, weight, bias, runningMean, runningVar, /*training=*/cstFalse, cstMomentum, cstEps, /*cudnn_enabled=*/cstFalse); return success(); }); patterns.onOp( "AveragePool", 11, [](OpBinder binder, ConversionPatternRewriter &rewriter) { std::string autoPad; SmallVector dilation; if (binder.customOpNameStringAttr(autoPad, "auto_pad", "NOTSET")) return failure(); if (autoPad != "NOTSET") { // TODO: Add support for `auto_pad` != "NOTSET" return rewriter.notifyMatchFailure( binder.op, "unsupported conversion: auto_pad != NOTSET"); } if (binder.s64IntegerArrayAttr(dilation, "dilations", {})) { return failure(); } if (dilation.size() > 0) { return rewriter.notifyMatchFailure( binder.op, "dilation is not supported by torch.aten.avgpool op"); } Torch::ValueTensorType resultType; Value operand; bool ceilMode, countIncludePad; if (binder.tensorOperand(operand) || binder.s64BoolAttr(ceilMode, "ceil_mode", false) || binder.s64BoolAttr(countIncludePad, "count_include_pad", false) || binder.tensorResultType(resultType)) return failure(); // Determine the rank of input tensor. std::optional maybeRank = Torch::getTensorRank(operand); if (!maybeRank) return rewriter.notifyMatchFailure(binder.op, "Unimplemented: unranked tensor"); unsigned rank = *maybeRank; SmallVector kernel, padding, strides; if (binder.s64IntegerArrayAttr(kernel, "kernel_shape", {})) { return failure(); } if (kernel.size() != rank - 2) { return rewriter.notifyMatchFailure( binder.op, "kernel list size does not match the number of axes"); } SmallVector defaultPadding(2 * (rank - 2), 0); if (binder.s64IntegerArrayAttr(padding, "pads", defaultPadding)) { return failure(); } if (padding.size() != 2 * (rank - 2)) { return rewriter.notifyMatchFailure( binder.op, "padding list size does not match twice the number of axes"); } if (binder.s64IntegerArrayAttr( strides, "strides", llvm::SmallVector(rank - 2, 1))) { return failure(); } if (strides.size() != 1 && strides.size() != rank - 2) { return rewriter.notifyMatchFailure( binder.op, "strides list size does not match the number of axes"); } SmallVector cstKernel, cstPadding, cstStrides; for (int64_t i : kernel) { cstKernel.push_back(rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(i))); } for (int64_t i : padding) { cstPadding.push_back(rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(i))); } for (int64_t i : strides) { cstStrides.push_back(rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(i))); } Value kernelSizeList = rewriter.create( binder.getLoc(), Torch::ListType::get(Torch::IntType::get(binder.op->getContext())), cstKernel); Value paddingList = rewriter.create( binder.getLoc(), Torch::ListType::get(Torch::IntType::get(binder.op->getContext())), cstPadding); Value stridesList = rewriter.create( binder.getLoc(), Torch::ListType::get(Torch::IntType::get(binder.op->getContext())), cstStrides); Value cstCeilMode = rewriter.create(binder.getLoc(), ceilMode); Value cstCountIncludePad = rewriter.create( binder.getLoc(), countIncludePad); Value cstNone = rewriter.create(binder.getLoc()); if (rank == 3) { rewriter.replaceOpWithNewOp( binder.op, resultType, operand, kernelSizeList, stridesList, paddingList, cstCeilMode, cstCountIncludePad); return success(); } else if (rank == 4) { rewriter.replaceOpWithNewOp( binder.op, resultType, operand, kernelSizeList, stridesList, paddingList, cstCeilMode, cstCountIncludePad, /*divisor_override=*/cstNone); return success(); } else if (rank == 5) { rewriter.replaceOpWithNewOp( binder.op, resultType, operand, kernelSizeList, stridesList, paddingList, cstCeilMode, cstCountIncludePad, /*divisor_override=*/cstNone); return success(); } return failure(); }); patterns.onOp( "Bernoulli", 15, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value input; int64_t dtypeIntOnnx; if (binder.tensorOperand(input) || binder.s64IntegerAttr(dtypeIntOnnx, "dtype", -1) || binder.tensorResultType(resultType)) return failure(); SmallString<64> name("torch.onnx."); name.append("seed"); auto attr = binder.op->getAttr(name); if (attr) { return rewriter.notifyMatchFailure( binder.op, "unimplemented: support not present for seed attribute"); } Value none = rewriter.create(binder.getLoc()); Value bernoulli = rewriter.create( binder.getLoc(), input.getType(), input, /*generator=*/none); if (dtypeIntOnnx == -1) { // True, if dtype attribute value is not present. rewriter.replaceOp(binder.op, bernoulli); return success(); } std::optional dtypeIntTorch = onnxDtypeIntToTorchDtypeInt(dtypeIntOnnx); if (!dtypeIntTorch.has_value()) { return rewriter.notifyMatchFailure( binder.op, "unimplemented support for the given dtype conversion"); } Value constDtype = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(dtypeIntTorch.value())); Value cstFalse = rewriter.create(binder.getLoc(), false); rewriter.replaceOpWithNewOp( binder.op, resultType, bernoulli, constDtype, /*non_blocking=*/cstFalse, /*copy=*/cstFalse, /*memory_format=*/none); return success(); }); patterns.onOp( "BitShift", 11, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value lhs, rhs; std::string direction; if (binder.tensorOperands(lhs, rhs) || binder.tensorResultType(resultType) || binder.customOpNameStringAttr(direction, "direction", "")) return failure(); if (direction == "LEFT") { rewriter.replaceOpWithNewOp( binder.op, resultType, lhs, rhs); } else { rewriter.replaceOpWithNewOp( binder.op, resultType, lhs, rhs); } return success(); }); patterns.onOp("BitwiseAnd", 18, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value lhs, rhs; std::string direction; if (binder.tensorOperands(lhs, rhs) || binder.tensorResultType(resultType)) return failure(); rewriter.replaceOpWithNewOp( binder.op, resultType, lhs, rhs); return success(); }); patterns.onOp("BitwiseOr", 18, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value lhs, rhs; std::string direction; if (binder.tensorOperands(lhs, rhs) || binder.tensorResultType(resultType)) return failure(); rewriter.replaceOpWithNewOp( binder.op, resultType, lhs, rhs); return success(); }); patterns.onOp("BitwiseNot", 18, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value operand; if (binder.tensorOperand(operand) || binder.tensorResultType(resultType)) return failure(); rewriter.replaceOpWithNewOp( binder.op, resultType, operand); return success(); }); patterns.onOp("BitwiseXor", 18, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value lhs, rhs; std::string direction; if (binder.tensorOperands(lhs, rhs) || binder.tensorResultType(resultType)) return failure(); rewriter.replaceOpWithNewOp( binder.op, resultType, lhs, rhs); return success(); }); patterns.onOp( "Cast", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value operand; int64_t dtypeIntOnnx; if (binder.tensorOperand(operand) || binder.s64IntegerAttr(dtypeIntOnnx, "to") || binder.tensorResultType(resultType)) return failure(); std::optional dtypeIntTorch = onnxDtypeIntToTorchDtypeInt(dtypeIntOnnx); if (!dtypeIntTorch.has_value()) { return rewriter.notifyMatchFailure( binder.op, "unimplemented support for the given dtype conversion"); } Value constDtype = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(dtypeIntTorch.value())); Value none = rewriter.create(binder.getLoc()); Value cstFalse = rewriter.create(binder.getLoc(), false); rewriter.replaceOpWithNewOp( binder.op, resultType, operand, constDtype, /*non_blocking=*/cstFalse, /*copy=*/cstFalse, /*memory_format=*/none); return success(); }); patterns.onOp( "CastLike", 15, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value input, target; if (binder.tensorOperands(input, target) || binder.tensorResultType(resultType)) return failure(); // TODO: Add support to handle the `saturate` attribute. // Ignoring it right now, since it's only using during the float8 // conversions which are not supported in Torch-MLIR right now. Torch::ValueTensorType targetTy = cast(target.getType()); if (!targetTy.hasDtype()) { return rewriter.notifyMatchFailure(binder.op, "target tensor must have a dtype"); } Type targetDtype = targetTy.getDtype(); Value constDtype = Torch::getDtypeIntValueForType( rewriter, binder.getLoc(), targetDtype); Value none = rewriter.create(binder.getLoc()); Value cstFalse = rewriter.create(binder.getLoc(), false); rewriter.replaceOpWithNewOp( binder.op, resultType, input, constDtype, /*non_blocking=*/cstFalse, /*copy=*/cstFalse, /*memory_format=*/none); return success(); }); patterns.onOp("Ceil", 13, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value operand; if (binder.tensorOperand(operand) || binder.tensorResultType(resultType)) return failure(); rewriter.replaceOpWithNewOp( binder.op, resultType, operand); return success(); }); patterns.onOp( "Celu", 12, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value operand; float alpha; if (binder.tensorOperand(operand) || binder.tensorResultType(resultType) || binder.f32FloatAttr(alpha, "alpha", 1.0f)) return failure(); // exp(x/alpha) Value constAlpha = rewriter.create( binder.getLoc(), rewriter.getType(), rewriter.getF64FloatAttr(alpha)); Value xDivAlpha = rewriter.create( binder.getLoc(), resultType, operand, constAlpha); Value expXDivAlpha = rewriter.create( binder.getLoc(), resultType, xDivAlpha); // alpha * (exp(x/alpha) - 1) Value constantOne = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(1)); Value subOne = rewriter.create( binder.getLoc(), resultType, expXDivAlpha, constantOne, constantOne); Value mulAlpha = rewriter.create( binder.getLoc(), resultType, subOne, constAlpha); Value constantZero = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(0)); Value zeroTensor = createRank0Tensor(rewriter, binder.getLoc(), resultType, constantZero); // min(0, alpha * (exp(x/alpha) - 1)) Value minExpression = rewriter.create( binder.getLoc(), resultType, zeroTensor, mulAlpha); // max(0, x) Value maxExpression = rewriter.create( binder.getLoc(), resultType, zeroTensor, operand); // max(0,x) + min(0, alpha * (exp(x/alpha) - 1)) rewriter.replaceOpWithNewOp( binder.op, resultType, maxExpression, minExpression, constantOne); return success(); }); patterns.onOp( "Clip", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) { // https://onnx.ai/onnx/operators/onnx__Clip.html // Inputs and outputs must be tensors. Value source; Torch::ValueTensorType resultType; if (binder.tensorOperandAtIndex(source, 0) || binder.tensorResultType(resultType)) { return failure(); } // Min and max can be args (version 11+) or attributes (version 6-). // They default to numeric_limits::lowest() and numeric_limits::max(). Value min; Value max; if (binder.op->getNumOperands() >= 2) min = binder.op->getOperand(1); if (binder.op->getNumOperands() == 3) max = binder.op->getOperand(2); // Note: attribute versions of the op only support float types. auto resultDtype = resultType.getDtype(); if (!min && binder.op->hasAttr("torch.onnx.min")) { float minValue; if (binder.f32FloatAttr(minValue, "min", std::numeric_limits::lowest())) return failure(); auto minSplatAttr = SplatElementsAttr::get( resultType.toBuiltinTensor().clone(resultDtype), rewriter.getFloatAttr(resultDtype, minValue)); min = rewriter.create( binder.getLoc(), resultType, minSplatAttr); } if (!max && binder.op->hasAttr("torch.onnx.max")) { float maxValue; if (binder.f32FloatAttr(maxValue, "max", std::numeric_limits::max())) return failure(); auto maxSplatAttr = SplatElementsAttr::get( resultType.toBuiltinTensor().clone(resultDtype), rewriter.getFloatAttr(resultDtype, maxValue)); max = rewriter.create( binder.getLoc(), resultType, maxSplatAttr); } if (!min && !max) { // Cliping with no limits is a no-op. rewriter.replaceOp(binder.op, source); return success(); } if (!max) { rewriter.replaceOpWithNewOp( binder.op, resultType, source, min); return success(); } rewriter.replaceOpWithNewOp( binder.op, resultType, source, min, max); return success(); }); patterns.onOp( "Compress", 9, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value operand, conditionTensor; int64_t axis; if (binder.tensorOperands(operand, conditionTensor) || binder.s64IntegerAttr(axis, "axis", INT64_MAX) || binder.tensorResultType(resultType)) return failure(); auto shapeSizes = dyn_cast(operand.getType()).getSizes(); auto resultSizes = resultType.getSizes(); // flatten input tensor if using default axis if (axis == INT64_MAX) { SmallVector nonzeroShape = {resultSizes[0]}; auto dtype = dyn_cast(conditionTensor.getType()) .getDtype(); auto nonzeroType = rewriter.getType(nonzeroShape, dtype); Value indexVal = rewriter.create( binder.getLoc(), nonzeroType, conditionTensor); Value cstZero = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(0)); Value cstNegOne = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(-1)); int64_t numElements = 1; for (auto i : shapeSizes) { numElements *= i; } SmallVector flattenShape = {numElements}; auto flattenType = rewriter.getType( flattenShape, resultType.getDtype()); Value flattenTensor = rewriter.create( binder.getLoc(), flattenType, operand, cstZero, cstNegOne); rewriter.replaceOpWithNewOp( binder.op, resultType, flattenTensor, cstZero, indexVal); return success(); } // Negative axis value means counting dimensions from the back if (axis < 0) axis += shapeSizes.size(); SmallVector nonzeroShape = {resultSizes[axis]}; auto dtype = dyn_cast(conditionTensor.getType()) .getDtype(); auto nonzeroType = rewriter.getType(nonzeroShape, dtype); Value indexVal = rewriter.create( binder.getLoc(), nonzeroType, conditionTensor); Value dimVal = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(axis)); rewriter.replaceOpWithNewOp( binder.op, resultType, operand, dimVal, indexVal); return success(); }); patterns.onOp( "Concat", 13, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; SmallVector tensors; int64_t dim; if (binder.tensorOperands(tensors, binder.op->getNumOperands()) || binder.s64IntegerAttr(dim, "axis", 0) || binder.tensorResultType(resultType)) return failure(); Type listElemType = cast(tensors[0].getType()) .getWithSizesAndDtype(/*optionalSizes=*/std::nullopt, /*optionalDtype=*/nullptr); Type listType = Torch::ListType::get(listElemType); Value tensorList = rewriter.create( binder.op->getLoc(), listType, tensors); Value cstDim = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(dim)); rewriter.replaceOpWithNewOp(binder.op, resultType, tensorList, cstDim); return success(); }); patterns.onOp( "Constant", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; if (binder.tensorResultType(resultType)) return failure(); auto dtype = resultType.getDtype(); float floatValue; if (binder.op->hasAttr("torch.onnx.value_float") && !binder.f32FloatAttr(floatValue, "value_float", 0.0)) { auto splatAttr = SplatElementsAttr::get(resultType.toBuiltinTensor().clone(dtype), rewriter.getFloatAttr(dtype, floatValue)); rewriter.replaceOpWithNewOp( binder.op, resultType, splatAttr); return success(); } int64_t intValue; if (binder.op->hasAttr("torch.onnx.value_int") && !binder.s64IntegerAttr(intValue, "value_int", 0)) { auto splatAttr = SplatElementsAttr::get(resultType.toBuiltinTensor().clone(dtype), rewriter.getIntegerAttr(dtype, intValue)); rewriter.replaceOpWithNewOp( binder.op, resultType, splatAttr); return success(); } if (DenseResourceElementsAttr attr = binder.op->getAttr("torch.onnx.value") .dyn_cast_or_null()) { // Bytes are stored in little endian order. Big endian support will // require swizzling. if (!Endian::little) { binder.op->emitError( "unimplemented: importing on big endian systems"); return failure(); } auto ty = cast(attr.getType()); ElementsAttr denseAttr; auto ptr = attr.getRawHandle().getBlob()->getData(); if (cast(attr.getType()).getElementType().isInteger(1)) { llvm::SmallVector newContents; for (auto val : ptr) { APInt apval(1, val); newContents.push_back(apval); } denseAttr = DenseElementsAttr::get(ty, newContents); } else { denseAttr = DenseElementsAttr::getFromRawBuffer(ty, ptr); } rewriter.replaceOpWithNewOp( binder.op, resultType, denseAttr); return success(); } if (ElementsAttr attr = binder.op->getAttr("torch.onnx.value") .dyn_cast_or_null()) { rewriter.replaceOpWithNewOp( binder.op, resultType, attr); return success(); } llvm::SmallVector intValues; if (!binder.s64IntegerArrayAttr(intValues, "value_ints", {}) && !intValues.empty()) { llvm::SmallVector apValues; for (auto intVal : intValues) { apValues.push_back(APInt(dtype.getIntOrFloatBitWidth(), intVal)); } auto attr = DenseElementsAttr::get( resultType.toBuiltinTensor().clone(dtype), apValues); rewriter.replaceOpWithNewOp( binder.op, resultType, attr); return success(); } return failure(); }); patterns.onOp( "Conv", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) { std::string autoPad; if (binder.customOpNameStringAttr(autoPad, "auto_pad", "NOTSET")) return failure(); if (autoPad != "NOTSET") { // TODO: Add support for `auto_pad` != "NOTSET" return rewriter.notifyMatchFailure( binder.op, "unsupported conversion: auto_pad != NOTSET"); } Torch::ValueTensorType resultType; Value input, weight; int64_t group; if (binder.tensorOperandAtIndex(input, 0) || binder.tensorOperandAtIndex(weight, 1) || binder.s64IntegerAttr(group, "group", 1) || binder.tensorResultType(resultType)) return failure(); auto weightTensorType = cast(weight.getType()); if (!weightTensorType || !weightTensorType.hasSizes()) { return rewriter.notifyMatchFailure( binder.op, "Expected weight type having sizes"); } ArrayRef weightShape = weightTensorType.getSizes(); SmallVector kernelShape; if (binder.s64IntegerArrayAttr(kernelShape, "kernel_shape", {})) return failure(); if (kernelShape.size()) { if (kernelShape.size() != weightShape.size() - 2) { return rewriter.notifyMatchFailure( binder.op, "unsupported conversion: kernel_shape list size should have " "number of values equal to weight_rank - 2"); } else { for (unsigned i = 0; i < kernelShape.size(); i++) { if (weightShape[i + 2] != kernelShape[i]) { return rewriter.notifyMatchFailure( binder.op, "unsupported conversion: kernel_shape value " "should be equal to the weight tensor shape"); } } } } // Determine the rank of input tensor. std::optional maybeRank = Torch::getTensorRank(input); if (!maybeRank) return rewriter.notifyMatchFailure(binder.op, "Unimplemented: unranked tensor"); unsigned rank = *maybeRank; SmallVector padding, strides, dilations; SmallVector defaultPadding, defaultStrides, defaultDilations; for (unsigned i = 0; i < rank - 2; i++) { defaultPadding.push_back(0); defaultStrides.push_back(1); defaultDilations.push_back(1); } // Padding for the beginning and ending along each spatial axis, it can // take any value greater than or equal to 0. The value represent the // number of pixels added to the beginning and end part of the // corresponding axis. pads format should be as follow [x1_begin, // x2_begin…x1_end, x2_end,…], where xi_begin the number of pixels added // at the beginning of axis i and xi_end, the number of pixels added at // the end of axis i. if (binder.s64IntegerArrayAttr(padding, "pads", defaultPadding)) { return failure(); } if (padding.size() != rank - 2 && padding.size() != 2 * (rank - 2)) { return rewriter.notifyMatchFailure( binder.op, "padding list size does not match the number of axes"); } if (binder.s64IntegerArrayAttr(dilations, "dilations", defaultDilations)) { return failure(); } if (dilations.size() != rank - 2) { return rewriter.notifyMatchFailure( binder.op, "dilations list size does not match the number of axes"); } if (binder.s64IntegerArrayAttr(strides, "strides", defaultStrides)) { return failure(); } if (strides.size() != rank - 2) { return rewriter.notifyMatchFailure( binder.op, "strides list size does not match the number of axes"); } SmallVector cstPadding, cstStrides, cstDilations, cstOutputPadding; if (padding.size() != 2 * (rank - 2)) { for (int64_t i : padding) { cstPadding.push_back(rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(i))); } } else { for (unsigned i = 0; i < padding.size() / 2; i++) { if (padding[i] != padding[i + (padding.size() / 2)]) { // TODO: Add support for different padding values for the // beginning and ending along each spatial axis return rewriter.notifyMatchFailure( binder.op, "unsupported conversion: padding values for the beginning " "and ending along each spatial axis must be equal"); } cstPadding.push_back(rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(padding[i]))); } } for (int64_t i : dilations) { cstDilations.push_back(rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(i))); } for (int64_t i : strides) { cstStrides.push_back(rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(i))); } Value cstZero = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(0)); cstOutputPadding = {cstZero, cstZero}; Value paddingList = rewriter.create( binder.getLoc(), Torch::ListType::get(Torch::IntType::get(binder.op->getContext())), cstPadding); Value dilationsList = rewriter.create( binder.getLoc(), Torch::ListType::get(Torch::IntType::get(binder.op->getContext())), cstDilations); Value stridesList = rewriter.create( binder.getLoc(), Torch::ListType::get(Torch::IntType::get(binder.op->getContext())), cstStrides); Value outputPaddingList = rewriter.create( binder.getLoc(), Torch::ListType::get(Torch::IntType::get(binder.op->getContext())), cstOutputPadding); Value transposed = rewriter.create(binder.getLoc(), false); Value bias; if (binder.op->getNumOperands() == 3) { if (binder.tensorOperandAtIndex(bias, 2)) { return failure(); } } else { bias = rewriter.create(binder.getLoc()); } Value cstGroup = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(group)); rewriter.replaceOpWithNewOp( binder.op, resultType, input, weight, bias, stridesList, paddingList, dilationsList, transposed, outputPaddingList, cstGroup); return success(); }); patterns.onOp( "ConvInteger", 10, [](OpBinder binder, ConversionPatternRewriter &rewriter) { std::string autoPad; if (binder.customOpNameStringAttr(autoPad, "auto_pad", "NOTSET")) return failure(); if (autoPad != "NOTSET") // TODO: Add support for `auto_pad` != "NOTSET" return rewriter.notifyMatchFailure( binder.op, "unsupported conversion: auto_pad != NOTSET"); Torch::ValueTensorType resultType; Value input, weight, inputZp, weightZp; int64_t group; if (binder.tensorOperandAtIndex(input, 0) || binder.tensorOperandAtIndex(weight, 1) || binder.s64IntegerAttr(group, "group", 1) || binder.tensorResultType(resultType)) return failure(); auto inputTy = dyn_cast(input.getType()); auto weightTy = dyn_cast(weight.getType()); if (!weightTy || !weightTy.hasSizes()) return rewriter.notifyMatchFailure( binder.op, "Expected weight type having sizes"); ArrayRef weightShape = weightTy.getSizes(); SmallVector kernelShape; if (binder.s64IntegerArrayAttr(kernelShape, "kernel_shape", {})) return failure(); if (kernelShape.size()) { if (kernelShape.size() != weightShape.size() - 2) { return rewriter.notifyMatchFailure( binder.op, "unsupported conversion: kernel_shape list size should have " "number of values equal to weight_rank - 2"); } else { for (unsigned i = 0; i < kernelShape.size(); i++) { if (weightShape[i + 2] != kernelShape[i]) return rewriter.notifyMatchFailure( binder.op, "unsupported conversion: kernel_shape value " "should be equal to the weight tensor shape"); } } } // Determine the rank of input tensor. std::optional maybeRank = Torch::getTensorRank(input); if (!maybeRank) return rewriter.notifyMatchFailure(binder.op, "Unimplemented: unranked tensor"); unsigned rank = *maybeRank; SmallVector padding, strides, dilations; SmallVector defaultPadding(rank - 2, 0), defaultStrides(rank - 2, 1), defaultDilations(rank - 2, 1); // Padding for the beginning and ending along each spatial axis, it can // take any value greater than or equal to 0. The value represent the // number of pixels added to the beginning and end part of the // corresponding axis. pads format should be as follow [x1_begin, // x2_begin…x1_end, x2_end,…], where xi_begin the number of pixels added // at the beginning of axis i and xi_end, the number of pixels added at // the end of axis i. if (binder.s64IntegerArrayAttr(padding, "pads", defaultPadding)) return failure(); if (padding.size() != rank - 2 && padding.size() != 2 * (rank - 2)) return rewriter.notifyMatchFailure( binder.op, "padding list size does not match the number of axes"); if (binder.s64IntegerArrayAttr(dilations, "dilations", defaultDilations)) return failure(); if (dilations.size() != rank - 2) return rewriter.notifyMatchFailure( binder.op, "dilations list size does not match the number of axes"); if (binder.s64IntegerArrayAttr(strides, "strides", defaultStrides)) return failure(); if (strides.size() != rank - 2) return rewriter.notifyMatchFailure( binder.op, "strides list size does not match the number of axes"); Value scale = rewriter.create( binder.getLoc(), rewriter.getType(), rewriter.getF64FloatAttr(1.0)); if (binder.tensorOperandAtIndex(inputZp, 2)) { inputZp = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(0)); } else { inputZp = rewriter.create( binder.getLoc(), rewriter.getType(), inputZp); } if (binder.tensorOperandAtIndex(weightZp, 3)) weightZp = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(0)); // TODO: support per channel quantization if weightZp is a 1-D tensor if (auto zpTy = dyn_cast(weightZp.getType())) { for (auto dim : zpTy.getSizes()) if (dim != 1) return failure(); weightZp = rewriter.create( binder.getLoc(), rewriter.getType(), weightZp); } SmallVector cstPadding; if (padding.size() != 2 * (rank - 2)) { for (int64_t i : padding) { cstPadding.push_back(rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(i))); } } else { for (unsigned i = 0; i < padding.size() / 2; i++) { if (padding[i] != padding[i + (padding.size() / 2)]) // TODO: Add support for different padding values for the // beginning and ending along each spatial axis return rewriter.notifyMatchFailure( binder.op, "unsupported conversion: padding values for the beginning " "and ending along each spatial axis must be equal"); cstPadding.push_back(rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(padding[i]))); } } Value paddingList = rewriter.create( binder.getLoc(), rewriter.getType( rewriter.getType()), cstPadding); Value dilationsList = createConstantIntList(binder, rewriter, dilations); Value stridesList = createConstantIntList(binder, rewriter, strides); Value outputPaddingList = createConstantIntList(binder, rewriter, {0, 0}); Value transposed = rewriter.create(binder.getLoc(), false); Value bias = rewriter.create(binder.getLoc()); Value cstGroup = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(group)); Type inputQTy = getQTorchTypeFromTorchIntType(inputTy); Type weightQTy = getQTorchTypeFromTorchIntType(weightTy); input = rewriter.create( binder.getLoc(), inputQTy, input, scale, inputZp); weight = rewriter.create( binder.getLoc(), weightQTy, weight, scale, weightZp); rewriter.replaceOpWithNewOp( binder.op, resultType, input, weight, bias, stridesList, paddingList, dilationsList, transposed, outputPaddingList, cstGroup); return success(); }); patterns.onOp( "ConvTranspose", 11, [](OpBinder binder, ConversionPatternRewriter &rewriter) { std::string autoPad; if (binder.customOpNameStringAttr(autoPad, "auto_pad", "NOTSET")) return failure(); if (autoPad != "NOTSET") { // TODO: Add support for `auto_pad` != "NOTSET" return rewriter.notifyMatchFailure( binder.op, "unsupported conversion: auto_pad != NOTSET"); } SmallVector outputShape; if (binder.s64IntegerArrayAttr(outputShape, "output_shape", {})) return failure(); if (outputShape.size()) { // TODO: Add support for non-None output_shape value. return rewriter.notifyMatchFailure( binder.op, "unsupported conversion: output_shape should be absent"); } Torch::ValueTensorType resultType; Value input, weight; int64_t group; if (binder.tensorOperandAtIndex(input, 0) || binder.tensorOperandAtIndex(weight, 1) || binder.s64IntegerAttr(group, "group", 1) || binder.tensorResultType(resultType)) return failure(); auto weightTensorType = cast(weight.getType()); if (!weightTensorType || !weightTensorType.hasSizes()) { return rewriter.notifyMatchFailure( binder.op, "Expected weight type having sizes"); } ArrayRef weightShape = weightTensorType.getSizes(); SmallVector kernelShape; if (binder.s64IntegerArrayAttr(kernelShape, "kernel_shape", {})) return failure(); if (kernelShape.size()) { if (kernelShape.size() != weightShape.size() - 2) { return rewriter.notifyMatchFailure( binder.op, "unsupported conversion: kernel_shape list size should have " "number of values equal to weight_rank - 2"); } else { for (unsigned i = 0; i < kernelShape.size(); i++) { if (weightShape[i + 2] != kernelShape[i]) { return rewriter.notifyMatchFailure( binder.op, "unsupported conversion: kernel_shape value " "should be equal to the weight tensor shape"); } } } } // Determine the rank of input tensor. std::optional maybeRank = Torch::getTensorRank(input); if (!maybeRank) return rewriter.notifyMatchFailure(binder.op, "Unimplemented: unranked tensor"); unsigned rank = *maybeRank; SmallVector padding, strides, dilations, outputPadding; SmallVector defaultPadding, defaultStrides, defaultDilations, defaultOutputPadding; for (unsigned i = 0; i < rank - 2; i++) { defaultPadding.push_back(0); defaultStrides.push_back(1); defaultDilations.push_back(1); defaultOutputPadding.push_back(0); } // Padding for the beginning and ending along each spatial axis, it can // take any value greater than or equal to 0. The value represent the // number of pixels added to the beginning and end part of the // corresponding axis. pads format should be as follow [x1_begin, // x2_begin…x1_end, x2_end,…], where xi_begin the number of pixels added // at the beginning of axis i and xi_end, the number of pixels added at // the end of axis i. if (binder.s64IntegerArrayAttr(padding, "pads", defaultPadding)) { return failure(); } if (padding.size() != rank - 2 && padding.size() != 2 * (rank - 2)) { return rewriter.notifyMatchFailure( binder.op, "padding list size does not match the number of axes"); } if (binder.s64IntegerArrayAttr(dilations, "dilations", defaultDilations)) { return failure(); } if (dilations.size() != rank - 2) { return rewriter.notifyMatchFailure( binder.op, "dilations list size does not match the number of axes"); } if (binder.s64IntegerArrayAttr(strides, "strides", defaultStrides)) { return failure(); } if (strides.size() != rank - 2) { return rewriter.notifyMatchFailure( binder.op, "strides list size does not match the number of axes"); } if (binder.s64IntegerArrayAttr(outputPadding, "output_padding", defaultOutputPadding)) { return failure(); } if (outputPadding.size() != rank - 2) { return rewriter.notifyMatchFailure( binder.op, "output_padding list size does not match the number of axes"); } SmallVector cstPadding, cstStrides, cstDilations, cstOutputPadding; if (padding.size() != 2 * (rank - 2)) { for (int64_t i : padding) { cstPadding.push_back(rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(i))); } } else { for (unsigned i = 0; i < padding.size() / 2; i++) { if (padding[i] != padding[i + (padding.size() / 2)]) { // TODO: Add support for different padding values for the // beginning and ending along each spatial axis return rewriter.notifyMatchFailure( binder.op, "unsupported conversion: padding values for the beginning " "and ending along each spatial axis must be equal"); } cstPadding.push_back(rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(padding[i]))); } } for (int64_t i : dilations) { cstDilations.push_back(rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(i))); } for (int64_t i : strides) { cstStrides.push_back(rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(i))); } for (int64_t i : outputPadding) { cstOutputPadding.push_back(rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(i))); } Value paddingList = rewriter.create( binder.getLoc(), Torch::ListType::get(Torch::IntType::get(binder.op->getContext())), cstPadding); Value dilationsList = rewriter.create( binder.getLoc(), Torch::ListType::get(Torch::IntType::get(binder.op->getContext())), cstDilations); Value stridesList = rewriter.create( binder.getLoc(), Torch::ListType::get(Torch::IntType::get(binder.op->getContext())), cstStrides); Value outputPaddingList = rewriter.create( binder.getLoc(), Torch::ListType::get(Torch::IntType::get(binder.op->getContext())), cstOutputPadding); Value transposed = rewriter.create(binder.getLoc(), true); Value bias; if (binder.op->getNumOperands() == 3) { if (binder.tensorOperandAtIndex(bias, 2)) { return failure(); } } else { bias = rewriter.create(binder.getLoc()); } Value cstGroup = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(group)); rewriter.replaceOpWithNewOp( binder.op, resultType, input, weight, bias, stridesList, paddingList, dilationsList, transposed, outputPaddingList, cstGroup); return success(); }); patterns.onOp("Cos", 7, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value operand; if (binder.tensorOperand(operand) || binder.tensorResultType(resultType)) return failure(); rewriter.replaceOpWithNewOp( binder.op, resultType, operand); return success(); }); patterns.onOp( "Cosh", 9, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value operand; if (binder.tensorOperand(operand) || binder.tensorResultType(resultType)) return failure(); // 1/2 * (exp(x) + exp(-x)) Value x = rewriter.create(binder.getLoc(), resultType, operand); Value neg = rewriter.create(binder.getLoc(), resultType, operand); Value y = rewriter.create(binder.getLoc(), resultType, neg); Value cstOne = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(1)); Value z = rewriter.create( binder.getLoc(), resultType, x, y, cstOne); Value cstTwo = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(2)); rewriter.replaceOpWithNewOp( binder.op, resultType, z, cstTwo); return success(); }); patterns.onOp( "CumSum", 11, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Location loc = binder.getLoc(); Torch::ValueTensorType resultType; Value operand; Value axisTensor; if (binder.tensorOperands(operand, axisTensor) || binder.tensorResultType(resultType)) return failure(); int64_t exclusive; int64_t reverse; // if bind succeeds and either is set, fail because not implemented if (!binder.s64IntegerAttr(exclusive, "exclusive", 0)) if (exclusive != 0) return rewriter.notifyMatchFailure( binder.op, "unsupported onnx.CumSum conversion: exclusive"); if (!binder.s64IntegerAttr(reverse, "reverse", 0)) if (reverse != 0) return rewriter.notifyMatchFailure( binder.op, "unsupported onnx.CumSum conversion: reverse"); // deal with neg axis: if (axis < 0) axis += rank int64_t rank = cast(operand.getType()).getSizes().size(); Value rankVal = rewriter.create( binder.getLoc(), rewriter.getType(), rewriter.getIntegerAttr(rewriter.getIntegerType(64), rank)); Value zero = rewriter.create( loc, rewriter.getI64IntegerAttr(0)); Value axisScalar = rewriter.create( binder.getLoc(), rewriter.getType(), axisTensor); Value isNegative = rewriter.create( binder.getLoc(), axisScalar, zero); isNegative = rewriter.create(binder.getLoc(), isNegative); Value finalOffset = rewriter.create( binder.getLoc(), isNegative, rankVal); Value dim = rewriter.create( binder.getLoc(), axisScalar, finalOffset); Torch::BaseTensorType resultTensorType = cast(resultType); if (!resultTensorType.hasDtype()) { return rewriter.notifyMatchFailure( binder.op, "expected result type to have a dtype"); } // resultTensorType.print(llvm::outs()); Value none = rewriter.create(loc); rewriter.replaceOpWithNewOp(binder.op, resultType, operand, dim, none); return success(); }); patterns.onOp( "DepthToSpace", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value input; int64_t blockSize; std::string mode; if (binder.tensorOperand(input) || binder.s64IntegerAttr(blockSize, "blocksize") || binder.customOpNameStringAttr(mode, "mode", "DCR") || binder.tensorResultType(resultType)) return failure(); auto inputTy = dyn_cast(input.getType()); if (!inputTy || !inputTy.hasSizes()) { return rewriter.notifyMatchFailure( binder.op, "Expected input type having sizes"); } SmallVector inputSizes{inputTy.getSizes()}; if (inputSizes.size() != 4) { return rewriter.notifyMatchFailure(binder.op, "Expected input rank to be 4"); } Value b = rewriter.create( binder.getLoc(), input, rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(0))); Value c = rewriter.create( binder.getLoc(), input, rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(1))); Value h = rewriter.create( binder.getLoc(), input, rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(2))); Value w = rewriter.create( binder.getLoc(), input, rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(3))); Value cstBlockSize = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(blockSize)); Value cstBlockSizeSquare = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(blockSize * blockSize)); Value cDivBlockSizeSquare = rewriter.create( binder.getLoc(), c, cstBlockSizeSquare); cDivBlockSizeSquare = rewriter.create( binder.getLoc(), cDivBlockSizeSquare); Value reshapeSizesList = rewriter.create( binder.getLoc(), Torch::ListType::get(Torch::IntType::get(input.getContext())), llvm::SmallVector{b, cstBlockSize, cstBlockSize, cDivBlockSizeSquare, h, w}); int64_t cDivBlockSizeSquareInt = inputSizes[1] == Torch::kUnknownSize ? Torch::kUnknownSize : inputSizes[1] / (blockSize * blockSize); SmallVector reshapeSizesInt{ inputSizes[0], blockSize, blockSize, cDivBlockSizeSquareInt, inputSizes[2], inputSizes[3]}; Value reshapedInput = rewriter.create( binder.getLoc(), inputTy.getWithSizesAndDtype(reshapeSizesInt, inputTy.getOptionalDtype()), input, reshapeSizesList); Value transposedInput; if (mode == "DCR") { if (failed(createTorchTransposeOp( rewriter, binder.getLoc(), reshapedInput, /*dimA=*/1, /*dimB=*/3, transposedInput))) return rewriter.notifyMatchFailure( binder.op, "Failed to create TorchTranspose op"); if (failed(createTorchTransposeOp( rewriter, binder.getLoc(), transposedInput, /*dimA=*/2, /*dimB=*/4, transposedInput))) return rewriter.notifyMatchFailure( binder.op, "Failed to create TorchTranspose op"); } else { // mode == "CRD" if (failed(createTorchTransposeOp( rewriter, binder.getLoc(), reshapedInput, /*dimA=*/2, /*dimB=*/4, transposedInput))) return rewriter.notifyMatchFailure( binder.op, "Failed to create TorchTranspose op"); if (failed(createTorchTransposeOp( rewriter, binder.getLoc(), transposedInput, /*dimA=*/3, /*dimB=*/4, transposedInput))) return rewriter.notifyMatchFailure( binder.op, "Failed to create TorchTranspose op"); } if (failed(createTorchTransposeOp( rewriter, binder.getLoc(), transposedInput, /*dimA=*/4, /*dimB=*/5, transposedInput))) return rewriter.notifyMatchFailure( binder.op, "Failed to create TorchTranspose op"); Value hMulBlockSize = rewriter.create( binder.getLoc(), h, cstBlockSize); Value wMulBlockSize = rewriter.create( binder.getLoc(), w, cstBlockSize); reshapeSizesList = rewriter.create( binder.getLoc(), Torch::ListType::get(Torch::IntType::get(input.getContext())), llvm::SmallVector{b, cDivBlockSizeSquare, hMulBlockSize, wMulBlockSize}); rewriter.replaceOpWithNewOp( binder.op, resultType, transposedInput, reshapeSizesList); return success(); }); patterns.onOp( "DequantizeLinear", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; llvm::SmallVector operands; if (binder.tensorOperands(operands, 3) || binder.tensorResultType(resultType)) return failure(); Value operand = operands[0]; Value scale = operands[1]; Value zeropoint = operands[2]; auto operandTy = cast(operand.getType()); auto scaleTy = dyn_cast(scale.getType()); if (!scaleTy || !scaleTy.hasSizes()) return rewriter.notifyMatchFailure(binder.op, "requires known rank"); if (!resultType.hasDtype()) return rewriter.notifyMatchFailure(binder.op, "requires known result dtype"); if (scaleTy.getSizes().size() == 0 || (scaleTy.getSizes().size() == 1 && scaleTy.getSizes()[0] == 1)) { Type qTy = operandTy.getDtype(); if (qTy.isUnsignedInteger(8)) { qTy = rewriter.getType(); } else if (qTy.isSignedInteger(8)) { qTy = rewriter.getType(); } else if (qTy.isSignedInteger(32)) { qTy = rewriter.getType(); } else { return rewriter.notifyMatchFailure(binder.op, "unsupported result dtype"); } auto qTensorTy = rewriter.getType( resultType.getOptionalSizes(), qTy); scale = rewriter.create( binder.getLoc(), rewriter.getType(), scale); zeropoint = rewriter.create( binder.getLoc(), rewriter.getType(), zeropoint); auto quantize = rewriter.create( binder.getLoc(), qTensorTy, operand, scale, zeropoint); rewriter.replaceOpWithNewOp( binder.op, resultType, quantize); return success(); } return rewriter.notifyMatchFailure(binder.op, "unimplemented: non-scalar scale"); }); patterns.onOp("Div", 7, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value lhs, rhs; if (binder.tensorOperands(lhs, rhs) || binder.tensorResultType(resultType)) return failure(); rewriter.replaceOpWithNewOp( binder.op, resultType, lhs, rhs); return success(); }); patterns.onOp( "Dropout", 12, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Location loc = binder.getLoc(); Torch::ValueTensorType resultType; int64_t numOperands = binder.op->getNumOperands(); SmallVector operands; int64_t seed; if (binder.tensorOperands(operands, numOperands) || binder.s64IntegerAttr(seed, "seed", 0) || binder.tensorResultTypeAtIndex(resultType, 0)) return failure(); // Global Seed value is 0. if (seed != 0) { return rewriter.notifyMatchFailure(binder.op, "expected seed value to be 0"); } Value ratio, trainingMode; if (numOperands == 3) { ratio = rewriter.create(loc, operands[1]); Value trainVal = operands[2]; auto trainTensorType = dyn_cast(trainVal.getType()); if (!trainTensorType) return rewriter.notifyMatchFailure(binder.op, "train tensor must have a type"); Type inputDtype = trainTensorType.getOptionalDtype(); if (!inputDtype || !inputDtype.isInteger(1)) return rewriter.notifyMatchFailure( binder.op, "train tensor must have an integer dtype of width 1"); std::optional inputRank = Torch::getTensorRank(trainVal); if (!inputRank || *inputRank != 0) return rewriter.notifyMatchFailure(binder.op, "train tensor must have rank 0"); if (auto valueTensorLiteralOp = trainVal.getDefiningOp()) { auto val = cast(valueTensorLiteralOp.getValue()) .getSplatValue(); trainingMode = rewriter.create(loc, val); } else { Value trainingModeScalar = rewriter.create(loc, operands[2]); Value cstOne = rewriter.create( loc, rewriter.getI64IntegerAttr(1)); trainingMode = rewriter.create( loc, trainingModeScalar, cstOne); } } else if (numOperands == 2) { ratio = rewriter.create(loc, operands[1]); trainingMode = rewriter.create(loc, false); } else { ratio = rewriter.create( loc, rewriter.getF64FloatAttr(0.5)); trainingMode = rewriter.create(loc, false); } Value dropout = rewriter.create( loc, resultType, /*input=*/operands[0], ratio, trainingMode); if (binder.op->getNumResults() == 1) { rewriter.replaceOp(binder.op, dropout); return success(); } Torch::ValueTensorType maskType; if (binder.tensorResultTypeAtIndex(maskType, 1)) return failure(); Value dtype = rewriter.create( loc, rewriter.getI64IntegerAttr( (int64_t)torch_upstream::ScalarType::Bool)); Value none = rewriter.create(loc); Value mask = rewriter.create( loc, maskType, operands[0], dtype, /*layout=*/none, /*device=*/none, /*pin_memory=*/none, /*memory_format=*/none); rewriter.replaceOp(binder.op, {dropout, mask}); return success(); }); patterns.onOp( "DynamicQuantizeLinear", 11, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Location loc = binder.getLoc(); Value input; Torch::ValueTensorType resultType, scaleType, zeroPointType; if (binder.tensorOperand(input) || binder.tensorResultTypeAtIndex(resultType, 0) || binder.tensorResultTypeAtIndex(scaleType, 1) || binder.tensorResultTypeAtIndex(zeroPointType, 2)) return failure(); Value scale, zeroPoint; // scale = ( max(0, max(input)) - min(0, min(input)) ) / 255 Value inputMax = rewriter.create(loc, scaleType, input); Value inputMin = rewriter.create(loc, scaleType, input); Value constantZero = rewriter.create( loc, rewriter.getF64FloatAttr(0)); Value constantOne = rewriter.create( loc, rewriter.getI64IntegerAttr(1)); Value zeroTensor = createRank0Tensor(rewriter, loc, scaleType, constantZero); Value inputMaxW0 = rewriter.create( loc, scaleType, inputMax, zeroTensor); Value inputMinW0 = rewriter.create( loc, scaleType, inputMin, zeroTensor); Value scaleTensor = rewriter.create( loc, scaleType, inputMaxW0, inputMinW0, constantOne); // Note: the following is hard-coded for ui8 Value width = rewriter.create( loc, rewriter.getF64FloatAttr(255)); Value widthTensor = createRank0Tensor(rewriter, loc, scaleType, width); scaleTensor = rewriter.create( loc, scaleType, scaleTensor, widthTensor); // compute the preZeroPoint = 0 - (inputMin/scale) // compute the zeroPoint = cast ( round (clip or saturate // (preZeroPoint))) Value preZeroPoint = rewriter.create( loc, scaleType, inputMin, scaleTensor); preZeroPoint = rewriter.create( loc, scaleType, zeroTensor, preZeroPoint, constantOne); // saturate to interval [0, 255] preZeroPoint = rewriter.create( loc, scaleType, preZeroPoint, /*min=*/constantZero, /*max=*/width); // round, then cast to uint8 preZeroPoint = rewriter.create(loc, scaleType, preZeroPoint); Type qTy = rewriter.getType(); auto qTensorTy = rewriter.getType( resultType.getOptionalSizes(), qTy); auto torchqTy = Torch::getScalarTypeForType(qTy); Value tyConst = rewriter.create( binder.getLoc(), rewriter.getType(), rewriter.getIntegerAttr(rewriter.getIntegerType(64), static_cast(torchqTy))); Value none = rewriter.create(loc); Value cstFalse = rewriter.create(loc, false); Value zeroPointTensor = rewriter.create( loc, zeroPointType, preZeroPoint, tyConst, /*non_blocking=*/cstFalse, /*copy=*/cstFalse, /*memory_format=*/none); // extract scale and zeroPoint scalars to pass to // AtenQuantizePerTensorOp zeroPoint = rewriter.create( loc, rewriter.getType(), zeroPointTensor); scale = rewriter.create( loc, rewriter.getType(), scaleTensor); Value quantizedTensor = rewriter.create( loc, qTensorTy, input, scale, zeroPoint, tyConst); // get uint8 tensor output Value output = rewriter.create(loc, resultType, quantizedTensor); rewriter.replaceOp(binder.op, {output, scaleTensor, zeroPointTensor}); return success(); }); patterns.onOp("Equal", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value lhs, rhs; std::string direction; if (binder.tensorOperands(lhs, rhs) || binder.tensorResultType(resultType)) return failure(); rewriter.replaceOpWithNewOp( binder.op, resultType, lhs, rhs); return success(); }); patterns.onOp("Elu", 6, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Location loc = binder.getLoc(); Torch::ValueTensorType resultType; Value input; float alpha; if (binder.tensorOperand(input) || binder.f32FloatAttr(alpha, "alpha") || binder.tensorResultType(resultType)) return failure(); Value cstAlpha = rewriter.create( loc, rewriter.getF64FloatAttr(alpha)); Value cstOne = rewriter.create( loc, rewriter.getF64FloatAttr(1.0)); rewriter.replaceOpWithNewOp( binder.op, resultType, input, cstAlpha, /*scale=*/cstOne, /*input_scale=*/cstOne); return success(); }); patterns.onOp("Erf", 13, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value operand; std::string direction; if (binder.tensorOperand(operand) || binder.tensorResultType(resultType)) return failure(); rewriter.replaceOpWithNewOp( binder.op, resultType, operand); return success(); }); patterns.onOp("Exp", 6, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value operand; if (binder.tensorOperand(operand) || binder.tensorResultType(resultType)) return failure(); rewriter.replaceOpWithNewOp( binder.op, resultType, operand); return success(); }); patterns.onOp( "Expand", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) { // uses ideas and code from onnx.Reshape auto loc = binder.getLoc(); Torch::ValueTensorType resultType; Value data, shape; if (binder.tensorOperands(data, shape) || binder.tensorResultType(resultType)) return failure(); auto dataType = cast(data.getType()); auto shapeType = cast(shape.getType()); if (!dataType.hasSizes() || !shapeType.hasSizes()) return failure(); auto shapeSizes = shapeType.getSizes(); int64_t dataRank = dataType.getSizes().size(); int64_t shapeRank = shapeSizes.size(); if (shapeRank != 1 || shapeSizes[0] == Torch::kUnknownSize) return failure(); auto rankDifference = dataRank - shapeSizes[0]; SmallVector selectSizes; Type selectResultType = shapeType.getWithSizesAndDtype( llvm::ArrayRef(selectSizes), shapeType.getOptionalDtype()); // Variable to store 1-D onnx shape tensor, shapeSizes[0] has the // dimension size // A constant zero value Value zero = rewriter.create( loc, rewriter.getI64IntegerAttr(0)); // Variable to store pytorch int list of shape (dimension) SmallVector dimList; // Convert the shape tensor from vector of int64_t to torch int list as // we are using torch implementation Torch::AtenBroadcastToOp which // takes list of int for (int i = 0; i < shapeSizes[0]; i++) { Value selectIndex = rewriter.create( loc, rewriter.getType(), rewriter.getIntegerAttr(rewriter.getIntegerType(64), i)); Value extract = rewriter.create( loc, selectResultType, shape, zero, selectIndex); Value dim = rewriter.create( loc, rewriter.getType(), extract); if (i + rankDifference >= 0) { Value iv = rewriter.create(loc, i + rankDifference); auto sz = rewriter.create( loc, rewriter.getType(), data, iv); dim = rewriter.create(loc, dim, sz); } dimList.push_back(dim); } Value dimValueList = rewriter.create( binder.getLoc(), Torch::ListType::get(Torch::IntType::get(binder.op->getContext())), dimList); rewriter.replaceOpWithNewOp( binder.op, resultType, data, dimValueList); return success(); }); patterns.onOp( "EyeLike", 9, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value operand; int64_t dtypeIntOnnx, diagonalIndex; if (binder.tensorOperand(operand) || binder.s64IntegerAttr(dtypeIntOnnx, "dtype", 1) || binder.s64IntegerAttr(diagonalIndex, "k", 0) || binder.tensorResultType(resultType)) return failure(); auto operandTy = cast(operand.getType()); SmallVector shape(operandTy.getSizes()); for (unsigned i = 0; i < shape.size(); i++) { if (shape[i] == ShapedType::kDynamic) shape[i] = Torch::kUnknownSize; } Value cst0 = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(0)); Value cst1 = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(1)); Value nVal = rewriter.create(binder.getLoc(), operand, cst0); Value mVal = rewriter.create(binder.getLoc(), operand, cst1); Value noneVal = rewriter.create(binder.getLoc()); std::optional dtypeIntTorch = onnxDtypeIntToTorchDtypeInt(dtypeIntOnnx); if (!dtypeIntTorch.has_value()) { return rewriter.notifyMatchFailure( binder.op, "unimplemented support for the given dtype conversion"); } Value dtypeVal = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(dtypeIntTorch.value())); // diagonalIndex = 0 populates the main diagonal // diagonalIndex > 0 populates an upper diagonal // diagonalIndex < 0 populates a lower diagonal if (diagonalIndex == 0) { rewriter.replaceOpWithNewOp( binder.op, resultType, nVal, mVal, dtypeVal, noneVal, noneVal, noneVal); return success(); } Value diagVal = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(std::abs(diagonalIndex))); Value newN, newM, dimVal, startVal; // get shapes of main diag eye op and zeros op if (diagonalIndex > 0) { newN = nVal; newM = rewriter.create(binder.getLoc(), mVal, diagVal); if (shape[1] != Torch::kUnknownSize) { shape[1] -= diagonalIndex; } dimVal = cst1; startVal = mVal; } else { newN = rewriter.create(binder.getLoc(), nVal, diagVal); newM = mVal; if (shape[0] != Torch::kUnknownSize) { shape[0] += diagonalIndex; } dimVal = cst0; startVal = nVal; } // create main diag eye op auto eyeResultType = rewriter.getType( shape, resultType.getOptionalDtype()); Value eyeOp = rewriter.create( binder.getLoc(), eyeResultType, newN, newM, dtypeVal, noneVal, noneVal, noneVal); // create zeros op SmallVector zerosShapeValues = {nVal, mVal}; Value zerosShapeList = rewriter.create( binder.getLoc(), rewriter.getType( rewriter.getType()), zerosShapeValues); Value zerosOp = rewriter.create( binder.getLoc(), resultType, zerosShapeList, dtypeVal, noneVal, noneVal, noneVal); // embeds the values of the eye matrix into zeros rewriter.replaceOpWithNewOp( binder.op, resultType, zerosOp, eyeOp, dimVal, /*start=*/diagVal, /*end=*/startVal, /*step=*/cst1); return success(); }); patterns.onOp( "Flatten", 13, [](OpBinder binder, ConversionPatternRewriter &rewriter) { // Flatten means to partition the input tensor's dimensions // into a "left range" spanning 0 to axis - 1 and a "right range" // spanning axis to rank - 1. Each range is then collapsed // into a single dimension, resulting in a 2-D tensor. // If either range is empty, it is replaced with a single // dimension of size 1. // // For example, for a 4-D input tensor of shape (a, b, c, d) // and axis==2, flatten produces a 2-D tensor of shape // (a*b, c*d). // // If instead axis==0, the left range is empty, and the result // is (1, a*b*c*d). Torch::ValueTensorType resultType; Value operand; int64_t axis; if (binder.tensorOperand(operand) || binder.s64IntegerAttr(axis, "axis", 1) || binder.tensorResultType(resultType)) return failure(); auto operandTy = cast(operand.getType()); llvm::SmallVector shape(operandTy.getSizes()); int64_t rank = shape.size(); // If axis is negative, count from the right instead of left if (axis < 0) axis = rank + axis; // We collapse in the dimensions to the right of the axis. for (int i = axis + 1; i < rank; ++i) { bool dynamic = shape[axis] == Torch::kUnknownSize || shape[i] == Torch::kUnknownSize; if (dynamic) { shape[axis] = Torch::kUnknownSize; } else { shape[axis] = shape[axis] * shape[i]; } } shape.resize(axis + 1, 1); auto baseType = rewriter.getType( shape, operandTy.getDtype()); Value collapsedRight; if (axis >= rank) { // If the right range is empty, add a dim of size 1 to the // right side of the shape: // cr = torch.unsqueeze(x, x.ndim) Value rankConst = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(rank)); collapsedRight = rewriter.create( binder.getLoc(), baseType, operand, rankConst); } else { // Otherwise, collapse the right range into a single dimension: // cr = torch._prims.collapse(x, axis, x.ndim - 1) Value axisConst = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(axis)); Value rankLess1Const = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(rank - 1)); collapsedRight = rewriter.create( binder.getLoc(), baseType, operand, axisConst, rankLess1Const); } Value zero = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(0)); if (axis <= 0) { // If the left range is empty, add a dim of size 1 to the // left side of the shape: // torch.unsqueeze(cr, 0) rewriter.replaceOpWithNewOp( binder.op, resultType, collapsedRight, zero); return success(); } // Otherwise, collapse the left range into a single dimension: // torch._prims.collapse(cr, 0, axis - 1) Value axisLess1Const = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(axis - 1)); rewriter.replaceOpWithNewOp( binder.op, resultType, collapsedRight, zero, axisLess1Const); return success(); }); patterns.onOp("Floor", 13, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value operand; if (binder.tensorOperand(operand) || binder.tensorResultType(resultType)) return failure(); rewriter.replaceOpWithNewOp( binder.op, resultType, operand); return success(); }); patterns.onOp( "ConstantOfShape", 1, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; Value shape; if (binder.tensorOperand(shape) || binder.tensorResultType(resultType)) return failure(); // convert shape tensor to list of ints auto shapeSizes = dyn_cast(shape.getType()).getSizes(); SmallVector dimList; Torch::BaseTensorType shapeType = cast(shape.getType()); Type selectResultType = rewriter.getType( ArrayRef({}), shapeType.getOptionalDtype()); Value zero = rewriter.create( binder.getLoc(), rewriter.getType(), rewriter.getIntegerAttr(rewriter.getIntegerType(64), 0)); for (int i = 0; i < shapeSizes[0]; i++) { Value selectIndex = rewriter.create( binder.getLoc(), rewriter.getType(), rewriter.getIntegerAttr(rewriter.getIntegerType(64), i)); Value extract = rewriter.create( binder.getLoc(), selectResultType, shape, zero, selectIndex); Value dim = rewriter.create( binder.getLoc(), rewriter.getType(), extract); dimList.push_back(dim); } Value dimValueList = rewriter.create( binder.getLoc(), Torch::ListType::get(Torch::IntType::get(binder.op->getContext())), dimList); Value noneVal = rewriter.create(binder.getLoc()); // Get fill_value if it is present. // Assumption : resultDType and value attr type match. auto attr = binder.op->getAttr("torch.onnx.value"); auto resultDType = resultType.getDtype(); // Extract the fill value and dtype // ONNX requires value attr to be a tensor if (!attr) { attr = DenseElementsAttr::get( resultType.toBuiltinTensor().clone(resultDType), rewriter.getFloatAttr(resultDType, 0.0)); } // If its a dense resource attr we need to convert to a dense type: if (DenseResourceElementsAttr rattr = dyn_cast_or_null(attr)) { // Bytes are stored in little endian order. Big endian support will // require swizzling. if (!Endian::little) { binder.op->emitError( "unimplemented: importing on big endian systems"); return failure(); } auto ty = cast(rattr.getType()); auto ptr = rattr.getRawHandle().getBlob()->getData(); auto denseAttr = DenseElementsAttr::getFromRawBuffer(ty, ptr); attr = dyn_cast_or_null(denseAttr); } Attribute splattr; if (isa(attr)) { auto denseAttr = cast(attr); splattr = denseAttr.getSplatValue(); } if (!isa(splattr)) { return rewriter.notifyMatchFailure( binder.op, "`value` attr tensor only supports types int and float for now."); } Value splatvalue; if (auto intattr = dyn_cast(splattr)) { IntegerType intty = cast(intattr.getType()); int64_t value; if (intty.isUnsignedInteger()) { value = intattr.getUInt(); } else if (intty.isSignedInteger()) { value = intattr.getSInt(); } else { value = intattr.getInt(); } splatvalue = rewriter.create(binder.getLoc(), value); } if (auto fpattr = dyn_cast(splattr)) splatvalue = rewriter.create( binder.getLoc(), rewriter.getF64FloatAttr(fpattr.getValueAsDouble())); rewriter.replaceOpWithNewOp( binder.op, resultType, dimValueList, splatvalue, /*dtype=*/noneVal, /*layout=*/noneVal, /*device=*/noneVal, /*pin_memory=*/noneVal); return success(); }); patterns.onOp( "Einsum", 12, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Torch::ValueTensorType resultType; SmallVector tensors; std::string equation; if (binder.tensorOperands(tensors, binder.op->getNumOperands()) || binder.customOpNameStringAttr(equation, "equation") || binder.tensorResultType(resultType)) return failure(); Type listElemType = tensors[0] .getType() .cast() .getWithSizesAndDtype(/*optionalSizes=*/std::nullopt, /*optionalDtype=*/nullptr); Type listType = Torch::ListType::get(listElemType); Value tensorList = rewriter.create( binder.op->getLoc(), listType, tensors); Value cstEquation = rewriter.create( binder.getLoc(), rewriter.getType(), rewriter.getStringAttr(equation)); Value cstNone = rewriter.create(binder.getLoc()); rewriter.replaceOpWithNewOp( binder.op, resultType, cstEquation, tensorList, /*path=*/cstNone); return success(); }); patterns.onOp( "BlackmanWindow", 17, [](OpBinder binder, ConversionPatternRewriter &rewriter) { Value size; Torch::ValueTensorType resultType; int64_t periodic, output_datatype; if (binder.tensorOperand(size) || binder.s64IntegerAttr(output_datatype, "output_datatype", 1) || binder.s64IntegerAttr(periodic, "periodic", 1) || binder.tensorResultType(resultType)) { return failure(); } double isPeriodicFp = static_cast(periodic); Value a0 = rewriter.create( binder.getLoc(), rewriter.getFloatAttr(rewriter.getF64Type(), 0.42)); Value a1 = rewriter.create( binder.getLoc(), rewriter.getFloatAttr(rewriter.getF64Type(), -0.5)); Value a2 = rewriter.create( binder.getLoc(), rewriter.getFloatAttr(rewriter.getF64Type(), 0.08)); Value zero = rewriter.create( binder.getLoc(), rewriter.getF64FloatAttr(0.0)); Value one = rewriter.create( binder.getLoc(), rewriter.getF64FloatAttr(1.0)); Value two = rewriter.create( binder.getLoc(), rewriter.getF64FloatAttr(2.0)); constexpr double pi = llvm::numbers::pi; Value tau = rewriter.create( binder.getLoc(), rewriter.getFloatAttr(rewriter.getF64Type(), 2.0 * pi)); Value noneVal = rewriter.create(binder.getLoc()); Value cstFalse = rewriter.create(binder.getLoc(), false); Value float32Type = rewriter.create( binder.getLoc(), rewriter.getI64IntegerAttr(/*float32Type*/ 6)); // Create an f32 ValueTensorType with thse same size as size, the // operand auto shapeOfOperand = size.getType() .dyn_cast() .getOptionalSizes(); auto f32ResultType = rewriter.getType( shapeOfOperand, rewriter.getF32Type()); Value periodicSizeFloat = rewriter.create( binder.getLoc(), f32ResultType, size, float32Type, cstFalse, cstFalse, noneVal); Value symmetricSizeFloat = rewriter.create( binder.getLoc(), periodicSizeFloat.getType(), periodicSizeFloat, one, one); Value isPeriodic = rewriter.create( binder.getLoc(), rewriter.getF64FloatAttr(isPeriodicFp)); Value isSymmetricFloat = rewriter.create( binder.getLoc(), rewriter.getF64FloatAttr(1.0 - isPeriodicFp)); Value periodicComponent = rewriter.create( binder.getLoc(), periodicSizeFloat.getType(), periodicSizeFloat, isPeriodic); Value symmetricComponent = rewriter.create( binder.getLoc(), symmetricSizeFloat.getType(), symmetricSizeFloat, isSymmetricFloat); Value sizeFloat = rewriter.create( binder.getLoc(), symmetricComponent.getType(), symmetricComponent, periodicComponent, one); // Here, size can be used in the place of periodicSizeFloat, as the // latter is just a float representation of the former. Value scalarLimit = getItemOp(binder, rewriter, size); Value rangeArr = rewriter.create( binder.getLoc(), resultType, zero, scalarLimit, one, noneVal, noneVal, noneVal, noneVal); Value rangeTimesTau = rewriter.create( binder.getLoc(), resultType, rangeArr, tau); Value rangeAngular = rewriter.create( binder.getLoc(), resultType, rangeTimesTau, sizeFloat); Value twoRangeAngular = rewriter.create( binder.getLoc(), resultType, rangeAngular, two); Value cosRangeAngular = rewriter.create( binder.getLoc(), resultType, rangeAngular); Value cosTwoRangeAngular = rewriter.create( binder.getLoc(), resultType, twoRangeAngular); Value a1Component = rewriter.create( binder.getLoc(), resultType, cosRangeAngular, a1); Value a2Component = rewriter.create( binder.getLoc(), resultType, cosTwoRangeAngular, a2); // AtenSubScalarOp actually requires a tensor operand as the LHS, that // is, operand #1. Therefore, to avoid errors, the onnx implementation // has been modified. a1 has been changed to negative half, and the // AtenSubScalarOp has been replaced with AtenAddScalarOp, as the add // operation is commutative. Value subA1Component = rewriter.create( binder.getLoc(), resultType, a1Component, a0, one); Value result = rewriter.create( binder.getLoc(), resultType, subA1Component, a2Component, one); std::optional dtypeIntTorch = onnxDtypeIntToTorchDtypeInt(output_datatype); if (!dtypeIntTorch.has_value()) { return rewriter.notifyMatchFailure( binder.op, "unimplemented support for the given dtype conversion"); } Value outputDtype = rewriter.create( binder.getLoc(), rewriter.getType(), rewriter.getIntegerAttr(rewriter.getIntegerType(64), dtypeIntTorch.value())); rewriter.replaceOpWithNewOp( binder.op, resultType, result, outputDtype, /*non_blocking=*/cstFalse, /*copy=*/cstFalse, /*memory_format=*/noneVal); return success(); }); }