//===------------------------------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // Also available under a BSD-style license. See LICENSE. // //===----------------------------------------------------------------------===// #include "mlir/Transforms/DialectConversion.h" namespace mlir { namespace torch { namespace torch_to_linalg { struct ReductionOpInfo { bool keepDim; Value tensorOperand; DenseSet dimSet; }; // Helper function to get the padding tensor given the padding int values. Value getPaddedTensor(Operation *op, OpBuilder &b, Value &input, SmallVectorImpl &lowPaddingInts, SmallVectorImpl &highPaddingInts, Value pad); // Helper function to get the padding tensor given the padding int values. // It's assumed that the padding on the low end and high end are the same, // and that zero padding is required. Value getZeroPaddedTensor(Operation *op, OpBuilder &b, Value &input, SmallVectorImpl &paddingInts); // Helper function that adds dynamic padding to a tensor, ignoring unpaddedDims // dimensions at the beginning. The high and low padding are the same, and the // padding value is zero. Value getDynamicZeroPaddedTensor(Operation *op, OpBuilder &b, Value &input, SmallVectorImpl &padding, int unpaddedDims = 0); // Helper function to caculate the output tensor dims for convolution-like ops. // Along each dim: // dim_out = // floor((dim_in + 2 * padding - dilation * (kernelSize - 1) - 1) / stride) + 1 Value getOutputDimForConvOps(OpBuilder &b, Location loc, Value in, Value paddingInt, Value dilationInt, Value kernelSizeInt, Value strideInt, bool ceilMode = false); // As above but for transposed convolution ops // Along each dim: // dim_out = // (dim_in - 1) * stride - 2 * padding + dilation * (kernelSize - 1) + // output_padding + 1 Value getOutputDimForConvTransposeOps(OpBuilder &b, Location loc, Value in, Value paddingInt, Value dilationInt, Value kernelSizeInt, Value strideInt, Value outputPaddingInt); // Create a reduction of `opInfo.tensorOperand`, reducing along the dimensions // in `opInfo.dimSet`. If `opInfo.keepDim` is true, the output tensor is the // same rank as the `opInfo.tensorOperand` and reduced dimensions are set to // size 1. `initElem` is the element used to initialize the output tensor where // the reduction will be stored. Value createReductionLinalgGeneric( OpBuilder &b, Location loc, const ReductionOpInfo &opInfo, Value initElem, function_ref bodyBuild); // Create a pointwise operation that uses values in `tensorOperands`, such that // the element type of the resulting tensor is `resultElementType`. Value createElementwiseLinalgGeneric( OpBuilder &b, Location loc, ValueRange tensorOperands, Type resultElementType, function_ref bodyBuild); // Broadcasts input tensor based on the broadcastToShape. LogicalResult broadcastToGivenShape(Operation *op, PatternRewriter &rewriter, Value input, SmallVector broadcastToShape, RankedTensorType broadcastType, Value &result, SmallVector useBroadcastToShape = {}); // Cast a tensor to a rank-equivalent tensor of unknown size, i.e. <1x2xf32> -> // Value removeSizeInformation(OpBuilder &b, Location loc, Value tensor); // Converts a tensor' element type to the specified `elementType`. Value convertTensorToElementType(OpBuilder &b, Location loc, Value tensor, Type elementType); } // namespace torch_to_linalg } // namespace torch } // namespace mlir