// RUN: torch-mlir-opt -torch-adjust-calling-conventions -allow-unregistered-dialect -split-input-file %s | FileCheck %s // CHECK-LABEL: func.func @basic( // CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[2,3,?],f32>) -> !torch.tensor { // CHECK: %[[ERASED:.*]] = torch.tensor_static_info_cast %[[ARG]] : !torch.vtensor<[2,3,?],f32> to !torch.vtensor // CHECK: %[[NONVAL_TENSOR:.*]] = torch.copy.to_tensor %[[ERASED]] : !torch.tensor // CHECK: return %[[NONVAL_TENSOR]] : !torch.tensor func.func @basic(%arg0: !torch.tensor {torch.type_bound = !torch.vtensor<[2,3,?],f32>}) -> !torch.tensor { return %arg0 : !torch.tensor } // CHECK-LABEL: func.func @no_type_bound( // CHECK-SAME: %[[ARG:.*]]: !torch.tensor) -> !torch.tensor { // CHECK: return %[[ARG]] : !torch.tensor func.func @no_type_bound(%arg0: !torch.tensor) -> !torch.tensor { return %arg0 : !torch.tensor } // CHECK-LABEL: func.func @call( // CHECK-SAME: %[[ARG:.*]]: !torch.vtensor<[2,3,?],f32>) -> !torch.tensor { // CHECK: %[[ARG_ERASED:.*]] = torch.tensor_static_info_cast %[[ARG]] : !torch.vtensor<[2,3,?],f32> to !torch.vtensor // CHECK: %[[ARG_NONVAL:.*]] = torch.copy.to_tensor %[[ARG_ERASED]] : !torch.tensor // CHECK: %[[INFO_ADDED:.*]] = torch.tensor_static_info_cast %[[ARG_NONVAL]] : !torch.tensor to !torch.tensor<[2,3,?],f32> // CHECK: %[[CALL_ARG:.*]] = torch.copy.to_vtensor %[[INFO_ADDED]] : !torch.vtensor<[2,3,?],f32> // CHECK: %[[CALL_RES:.*]] = call @call(%[[CALL_ARG]]) : (!torch.vtensor<[2,3,?],f32>) -> !torch.tensor // CHECK: return %[[ARG_NONVAL]] : !torch.tensor func.func @call(%arg0: !torch.tensor {torch.type_bound = !torch.vtensor<[2,3,?],f32>}) -> !torch.tensor { %0 = call @call(%arg0) : (!torch.tensor) -> !torch.tensor return %arg0 : !torch.tensor } // CHECK-LABEL: func.func @none_return() { // CHECK: %[[NONE:.*]] = torch.constant.none // CHECK: return func.func @none_return() -> !torch.none { %1 = torch.constant.none return %1 : !torch.none } // CHECK-LABEL: func.func @none_call_return() { // CHECK: call @none_return() : () -> () // CHECK: %[[NONE:.*]] = torch.constant.none // CHECK: "test.use"(%[[NONE]]) : (!torch.none) -> () // CHECK: return func.func @none_call_return() { %0 = call @none_return() : () -> !torch.none "test.use"(%0) : (!torch.none) -> () return } // CHECK-LABEL: func.func @tuple_return( // CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?],f32>, // CHECK-SAME: %[[ARG1:.*]]: !torch.vtensor<[?],f32>) -> (!torch.tensor, !torch.tensor) { // CHECK: %[[ARG0_ERASED:.*]] = torch.tensor_static_info_cast %[[ARG0]] : !torch.vtensor<[?],f32> to !torch.vtensor // CHECK: %[[ARG0_NONVAL:.*]] = torch.copy.to_tensor %[[ARG0_ERASED]] : !torch.tensor // CHECK: %[[ARG1_ERASED:.*]] = torch.tensor_static_info_cast %[[ARG1]] : !torch.vtensor<[?],f32> to !torch.vtensor // CHECK: %[[ARG1_NONVAL:.*]] = torch.copy.to_tensor %[[ARG1_ERASED]] : !torch.tensor // CHECK: %[[TUPLE:.*]] = torch.prim.TupleConstruct %[[ARG0_NONVAL]], %[[ARG1_NONVAL]] : // CHECK-SAME: !torch.tensor, !torch.tensor -> !torch.tuple // CHECK: %[[CST0:.*]] = torch.constant.int 0 // CHECK: %[[RET0:.*]] = torch.prim.TupleIndex %[[TUPLE]], %[[CST0]] : // CHECK-SAME: !torch.tuple, !torch.int -> !torch.tensor // CHECK: %[[CST1:.*]] = torch.constant.int 1 // CHECK: %[[RET1:.*]] = torch.prim.TupleIndex %[[TUPLE]], %[[CST1]] : // CHECK-SAME: !torch.tuple, !torch.int -> !torch.tensor // CHECK: return %[[RET0]], %[[RET1]] : !torch.tensor, !torch.tensor func.func @tuple_return(%arg0: !torch.tensor {torch.type_bound = !torch.vtensor<[?],f32>}, %arg1: !torch.tensor {torch.type_bound = !torch.vtensor<[?],f32>}) -> !torch.tuple { %1 = torch.prim.TupleConstruct %arg0, %arg1 : !torch.tensor, !torch.tensor -> !torch.tuple return %1 : !torch.tuple } // CHECK-LABEL: func.func @call_tuple_return( // CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?],f32>, // CHECK-SAME: %[[ARG1:.*]]: !torch.vtensor<[?],f32>) -> (!torch.tensor, !torch.tensor) { // CHECK: %[[ARG0_ERASED:.*]] = torch.tensor_static_info_cast %[[ARG0]] : !torch.vtensor<[?],f32> to !torch.vtensor // CHECK: %[[ARG0_NONVAL:.*]] = torch.copy.to_tensor %[[ARG0_ERASED]] : !torch.tensor // CHECK: %[[ARG1_ERASED:.*]] = torch.tensor_static_info_cast %[[ARG1]] : !torch.vtensor<[?],f32> to !torch.vtensor // CHECK: %[[ARG1_NONVAL:.*]] = torch.copy.to_tensor %[[ARG1_ERASED]] : !torch.tensor // CHECK: %[[ARG0_NONVAL_SHAPED:.*]] = torch.tensor_static_info_cast %[[ARG0_NONVAL]] : !torch.tensor to !torch.tensor<[?],f32> // CHECK: %[[ARG0_VAL_SHAPED:.*]] = torch.copy.to_vtensor %[[ARG0_NONVAL_SHAPED]] : !torch.vtensor<[?],f32> // CHECK: %[[ARG1_NONVAL_SHAPED:.*]] = torch.tensor_static_info_cast %[[ARG1_NONVAL]] : !torch.tensor to !torch.tensor<[?],f32> // CHECK: %[[ARG1_VAL_SHAPED:.*]] = torch.copy.to_vtensor %[[ARG1_NONVAL_SHAPED]] : !torch.vtensor<[?],f32> // CHECK: %[[RETS:.*]]:2 = call @tuple_return(%[[ARG0_VAL_SHAPED]], %[[ARG1_VAL_SHAPED]]) : // CHECK-SAME: (!torch.vtensor<[?],f32>, !torch.vtensor<[?],f32>) -> (!torch.tensor, !torch.tensor) // CHECK: %[[TUPLE:.*]] = torch.prim.TupleConstruct %[[RETS]]#0, %[[RETS]]#1 : // CHECK-SAME: !torch.tensor, !torch.tensor -> !torch.tuple // CHECK: %[[CST0:.*]] = torch.constant.int 0 // CHECK: %[[RET0:.*]] = torch.prim.TupleIndex %[[TUPLE]], %[[CST0]] : // CHECK-SAME: !torch.tuple, !torch.int -> !torch.tensor // CHECK: %[[CST1:.*]] = torch.constant.int 1 // CHECK: %[[RET1:.*]] = torch.prim.TupleIndex %[[TUPLE]], %[[CST1]] : // CHECK-SAME: !torch.tuple, !torch.int -> !torch.tensor // CHECK: return %[[RET0]], %[[RET1]] : !torch.tensor, !torch.tensor func.func @call_tuple_return(%arg0: !torch.tensor {torch.type_bound = !torch.vtensor<[?],f32>}, %arg1: !torch.tensor {torch.type_bound = !torch.vtensor<[?],f32>}) -> !torch.tuple { %0 = call @tuple_return(%arg0, %arg1) : (!torch.tensor, !torch.tensor) -> !torch.tuple return %0 : !torch.tuple }