//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "PassDetail.h" #include "npcomp/RefBackend/RefBackend.h" #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h" #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h" #include "mlir/Dialect/LLVMIR/LLVMDialect.h" #include "mlir/Dialect/StandardOps/Transforms/Passes.h" #include "mlir/Transforms/DialectConversion.h" #include "npcomp/Dialect/Refbackrt/IR/RefbackrtDialect.h" #include "npcomp/Dialect/Refbackrt/IR/RefbackrtOps.h" using namespace mlir; using namespace mlir::NPCOMP; using mlir::LLVM::LLVMFuncOp; using mlir::LLVM::LLVMType; //===----------------------------------------------------------------------===// // Descriptor types shared with the runtime. // // These correspond to the types in CompilerDataStructures.h //===----------------------------------------------------------------------===// // Get the LLVMType for refbackrt::FuncDescriptor. static LLVMType getFuncDescriptorTy(MLIRContext *context) { return LLVMType::getStructTy(context, { // Name length. LLVMType::getIntNTy(context, 32), // Name chars. LLVMType::getInt8PtrTy(context), // Type-erased function pointer. LLVMType::getInt8PtrTy(context), // Number of inputs. LLVMType::getIntNTy(context, 32), // Number of outputs. LLVMType::getIntNTy(context, 32), }); } // Get the LLVMType for refbackrt::ModuleDescriptor. static LLVMType getModuleDescriptorTy(MLIRContext *context) { return LLVMType::getStructTy(context, { // std::int32_t numFuncDescriptors; LLVMType::getIntNTy(context, 32), // FuncDescriptor *functionDescriptors; getFuncDescriptorTy(context).getPointerTo(), }); } //===----------------------------------------------------------------------===// // Compiler runtime functions. //===----------------------------------------------------------------------===// namespace { template class TrivialCompilerRuntimeLowering : public OpConversionPattern { public: TrivialCompilerRuntimeLowering(LLVM::LLVMFuncOp backingFunc) : OpConversionPattern(backingFunc.getContext()), backingFunc(backingFunc) {} LogicalResult matchAndRewrite(T op, ArrayRef operands, ConversionPatternRewriter &rewriter) const override { rewriter.replaceOpWithNewOp(op, backingFunc, operands); return success(); } LLVM::LLVMFuncOp backingFunc; }; } // namespace static LLVM::GlobalOp createGlobalString(ModuleOp module, StringAttr msg, OpBuilder &builder, Location loc) { // TODO: Deduplicate strings. std::string msgNulTerminated = msg.getValue().str(); msgNulTerminated.push_back('\0'); auto arrayTy = LLVMType::getArrayTy(LLVMType::getInt8Ty(module.getContext()), msgNulTerminated.size()); OpBuilder::InsertionGuard guard(builder); builder.setInsertionPointToStart(module.getBody()); // To get a unique symbol name, use a suffix derived from the current number // of ops in the module. // We can't use the SymbolTable's logic for this because the module // transiently contains a `func` and `llvm.func` with the same name during // conversion, preventing us from instantiating a SymbolTable. std::string symbolName = (Twine("__npcomp_string_") + Twine(llvm::size(llvm::to_vector<6>(module.getOps())))) .str(); auto globalOp = builder.create( loc, arrayTy, /*isConstant=*/true, LLVM::Linkage::Internal, symbolName, builder.getStringAttr(msgNulTerminated)); return globalOp; } namespace { class AbortIfOpCompilerRuntimeLowering : public OpConversionPattern { public: AbortIfOpCompilerRuntimeLowering(LLVM::LLVMFuncOp backingFunc) : OpConversionPattern(backingFunc.getContext()), backingFunc(backingFunc) {} LogicalResult matchAndRewrite(refbackrt::AbortIfOp op, ArrayRef operands, ConversionPatternRewriter &rewriter) const override { refbackrt::AbortIfOp::Adaptor adaptor(operands); auto *context = op.getContext(); // Create the global string, take its address, and gep to get an `i8*`. auto globalOp = createGlobalString(op.getParentOfType(), op.msgAttr(), rewriter, op.getLoc()); auto msgArray = rewriter.create(op.getLoc(), globalOp); auto c0 = rewriter.create( op.getLoc(), LLVMType::getIntNTy(context, 32), rewriter.getI32IntegerAttr(0)); auto msg = rewriter.create(op.getLoc(), LLVMType::getInt8PtrTy(context), msgArray, ValueRange({c0, c0})); rewriter.replaceOpWithNewOp( op, backingFunc, ValueRange({adaptor.pred(), msg})); return success(); } LLVM::LLVMFuncOp backingFunc; }; } // namespace // Create the LLVM runtime function backing the refbackrt op with name `name` // and requiring `type`. static LLVMFuncOp createCompilerRuntimeFuncDecl(StringRef name, LLVMType type, OpBuilder &builder, Location loc) { assert(type.isFunctionTy()); std::string symbolName = (Twine("__npcomp_compiler_rt_") + name).str(); return builder.create(loc, symbolName, type, LLVM::Linkage::External); } static void populateCompilerRuntimePatterns(ModuleOp module, OwningRewritePatternList &patterns, LLVMTypeConverter &typeConverter) { auto *context = module.getContext(); OpBuilder builder(module.getBodyRegion()); { auto abortIfFuncTy = LLVMType::getFunctionTy( LLVMType::getVoidTy(context), {LLVMType::getInt1Ty(context), LLVMType::getInt8PtrTy(context)}, /*isVarArg=*/false); LLVMFuncOp abortIfFunc = createCompilerRuntimeFuncDecl( "abort_if", abortIfFuncTy, builder, module.getLoc()); patterns.insert(abortIfFunc); } } //===----------------------------------------------------------------------===// // Lowering for module metadata //===----------------------------------------------------------------------===// static LLVM::GlobalOp createFuncDescriptorArray(ArrayRef funcMetadatas, OpBuilder &builder, Location loc) { auto llvmI32Ty = LLVMType::getIntNTy(builder.getContext(), 32); DenseMap globalsByName; for (auto funcMetadata : funcMetadatas) { auto arrayTy = LLVMType::getArrayTy(LLVMType::getInt8Ty(builder.getContext()), funcMetadata.funcName().size()); std::string llvmSymbolName = (Twine("__npcomp_internal_constant_") + funcMetadata.funcName()).str(); auto global = builder.create( loc, arrayTy, /*isConstant=*/true, LLVM::Linkage::Internal, llvmSymbolName, builder.getStringAttr(funcMetadata.funcName())); globalsByName[funcMetadata.funcName()] = global; } // This must match FuncDescriptor in the runtime. auto funcDescriptorTy = getFuncDescriptorTy(builder.getContext()); auto funcDescriptorArrayTy = LLVMType::getArrayTy(funcDescriptorTy, funcMetadatas.size()); auto funcDescriptorArrayGlobal = builder.create( loc, funcDescriptorArrayTy, /*isConstant=*/true, LLVM::Linkage::Internal, "__npcomp_func_descriptors", /*value=*/Attribute()); OpBuilder::InsertionGuard guard(builder); builder.createBlock(&funcDescriptorArrayGlobal.initializer()); // Build the initializer. Value funcDescriptorArray = builder.create(loc, funcDescriptorArrayTy); auto updateDescriptor = [&](Value value, std::initializer_list position) { funcDescriptorArray = builder.create( loc, funcDescriptorArray, value, /*position=*/builder.getI32ArrayAttr(position)); }; auto updateDescriptorWithI32Attr = [&](Attribute attr, std::initializer_list position) { auto constant = builder.create(loc, llvmI32Ty, attr); updateDescriptor(constant, position); }; auto c0 = builder.create(loc, llvmI32Ty, builder.getI32IntegerAttr(0)); for (auto funcMetadataAndIndex : llvm::enumerate(funcMetadatas)) { auto funcMetadata = funcMetadataAndIndex.value(); int32_t index = funcMetadataAndIndex.index(); // Name length. updateDescriptorWithI32Attr( builder.getI32IntegerAttr(funcMetadata.funcName().size()), {index, 0}); // Name chars. auto funcNameArray = builder.create( loc, globalsByName[funcMetadata.funcName()]); auto funcNamePtr = builder.create( loc, LLVMType::getInt8PtrTy(builder.getContext()), funcNameArray, ValueRange({c0, c0})); updateDescriptor(funcNamePtr, {index, 1}); // Function pointer. // // We create this reference to the original function (and use a dummy i8* // type). We will fix this up after conversion to point at wrapper // functions that satisfy the ABI requirements. // The bitcast is required so that after conversion the inserted value is an // i8* as expected by the descriptor struct. auto funcAddress = builder.create( loc, LLVMType::getInt8PtrTy(builder.getContext()), funcMetadata.funcName()); auto typeErasedFuncAddress = builder.create( loc, LLVMType::getInt8PtrTy(builder.getContext()), funcAddress); updateDescriptor(typeErasedFuncAddress, {index, 2}); // Number of inputs. updateDescriptorWithI32Attr(funcMetadata.numInputsAttr(), {index, 3}); // Number of outputs. updateDescriptorWithI32Attr(funcMetadata.numOutputsAttr(), {index, 4}); } builder.create(loc, funcDescriptorArray); return funcDescriptorArrayGlobal; } LLVM::GlobalOp createModuleDescriptor(LLVM::GlobalOp funcDescriptorArray, OpBuilder &builder, Location loc) { auto llvmI32Ty = LLVMType::getIntNTy(builder.getContext(), 32); auto moduleDescriptorTy = getModuleDescriptorTy(builder.getContext()); // TODO: Ideally this symbol name would somehow be related to the module // name, if we could consistently assume we had one. // TODO: We prepend _mlir so that mlir::ExecutionEngine's lookup logic (which // is typically only mean for function pointers) will find this raw symbol. auto moduleDescriptorGlobal = builder.create( loc, moduleDescriptorTy, /*isConstant=*/true, LLVM::Linkage::External, "_mlir___npcomp_module_descriptor", /*value=*/Attribute()); OpBuilder::InsertionGuard guard(builder); builder.createBlock(&moduleDescriptorGlobal.initializer()); Value moduleDescriptor = builder.create(loc, moduleDescriptorTy); auto updateDescriptor = [&](Value value, std::initializer_list position) { moduleDescriptor = builder.create( loc, moduleDescriptor, value, /*position=*/builder.getI32ArrayAttr(position)); }; updateDescriptor( builder.create( loc, llvmI32Ty, builder.getI32IntegerAttr( funcDescriptorArray.getType().getArrayNumElements())), {0}); auto funcDecriptorArrayAddress = builder.create(loc, funcDescriptorArray); auto rawFuncDescriptorPtr = builder.create( loc, getFuncDescriptorTy(builder.getContext()).getPointerTo(), funcDecriptorArrayAddress); updateDescriptor(rawFuncDescriptorPtr, {1}); builder.create(loc, moduleDescriptor); return moduleDescriptorGlobal; } namespace { class LowerModuleMetadata : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(refbackrt::ModuleMetadataOp op, ArrayRef operands, ConversionPatternRewriter &rewriter) const override { auto funcMetadatas = llvm::to_vector<6>(op.metadatas().getOps()); auto funcDescriptorArray = createFuncDescriptorArray(funcMetadatas, rewriter, op.getLoc()); auto moduleDescriptor = createModuleDescriptor(funcDescriptorArray, rewriter, op.getLoc()); // TODO: create get module descriptor wrapper (or upgrade // mlir::ExecutionEngine to allow raw symbol lookup) (void)moduleDescriptor; rewriter.eraseOp(op); return success(); } }; } // namespace // Performs the calculation: // ``` // ty *f(void **voidStarStar, int32_t i) { // return reinterpret_cast(voidStarStar[i]); // } // ``` static Value getTypedAddressFromVoidStarStar(Value voidStarStar, int32_t index, LLVMType ty, OpBuilder &builder, Location loc) { Value ci = builder.create( loc, LLVMType::getIntNTy(builder.getContext(), 32), builder.getI32IntegerAttr(index)); // Do `voidStarStar[i]` as a gep + load. auto inputPtrAddr = builder.create( loc, LLVMType::getInt8PtrTy(builder.getContext()).getPointerTo(), voidStarStar, ValueRange(ci)); auto inputPtr = builder.create(loc, inputPtrAddr); return builder.create(loc, ty.getPointerTo(), inputPtr); } static SmallVector loadCallArgs(Value inputsPtrPtr, LLVMType funcTy, OpBuilder &builder, Location loc) { SmallVector callArgs; // For each void* in the void**, cast it to the right type and load it. for (int i = 0, e = funcTy.getFunctionNumParams(); i < e; i++) { auto paramTy = funcTy.getFunctionParamType(i); auto addr = getTypedAddressFromVoidStarStar(inputsPtrPtr, i, paramTy, builder, loc); callArgs.push_back(builder.create(loc, addr)); } return callArgs; } static LLVM::LLVMType getUnrankedMemrefDescriptorType(MLIRContext *context) { LLVMTypeConverter converter(context); // LLVMTypeConverter doesn't directly expose the struct type used to represent // unranked memrefs on ABI boundaries. To get that type, we convert // an unranked memref type and see what it produces. // // An unranked memref is just a size_t for the rank and an void* pointer to // descriptor, so the choice of element type here is arbitrary -- it all // converts to the same thing. return converter .convertType(UnrankedMemRefType::get(Float32Type::get(context), /*memorySpace=*/0)) .cast(); } // Writes out the logical results of the wrapper function through the void** // passed on the ABI boundary. Because LLVM (and hence llvm.func) // only supports a single return type (or void/no results), the logic here needs // to be aware of the convention used in the Std to LLVM conversion to map // multiple return types. The details of this are in the function // packFunctionResults and its callers: // https://github.com/llvm/llvm-project/blob/fad9cba8f58ba9979f390a49cf174ec9fcec29a6/mlir/lib/Conversion/StandardToLLVM/StandardToLLVM.cpp#L282 static void storeWrapperResults(LLVM::CallOp callToWrapped, Value resultsPtrPtr, OpBuilder &builder, Location loc) { // 0 results. Nothing to do. if (callToWrapped.getNumResults() == 0) return; Value result = callToWrapped.getResult(0); auto ty = result.getType().cast(); // 1 logical result. if (ty == getUnrankedMemrefDescriptorType(ty.getContext())) { Value addr = getTypedAddressFromVoidStarStar(resultsPtrPtr, 0, ty, builder, loc); builder.create(loc, result, addr); return; } assert(ty.isStructTy() && "must be a multi-result packed struct!"); // >=2 logical results. The convention linked above will create a struct // wrapping. for (int i = 0, e = ty.getStructNumElements(); i < e; i++) { auto elementTy = ty.getStructElementType(i); Value addr = getTypedAddressFromVoidStarStar(resultsPtrPtr, i, elementTy, builder, loc); int32_t i32I = i; Value value = builder.create( loc, elementTy, result, builder.getI32ArrayAttr({i32I})); builder.create(loc, value, addr); } } // Construct a wrapper function. // For an externally visible function f(T1, T2) -> T3, T4, we create a // wrapper // __refbackrt_wrapper_f(void **inputs, void ** outputs) { // T3 t3; // T4 t4; // (t3, t4) = f(*cast(inputs[0]), *cast(inputs[1])); // *cast(outputs[0]) = t3; // *cast(outputs[1]) = t4; // } // This is very similar to MLIR's "packed" convention, but supporting // outputs. // TODO: Extend MLIR's void** wrappers to have outputs in this way. static LLVMFuncOp createWrapperFunc(LLVMFuncOp func) { auto *context = func.getContext(); LLVMType funcTy = func.getType(); auto voidStarTy = LLVMType::getInt8PtrTy(context); auto voidStarStarTy = voidStarTy.getPointerTo(); auto wrapperTy = LLVMType::getFunctionTy(LLVMType::getVoidTy(context), {voidStarStarTy, voidStarStarTy}, /*isVarArg=*/false); constexpr char kRefbackrtWrapperPrefix[] = "__refbackrt_wrapper_"; auto wrapperName = (Twine(kRefbackrtWrapperPrefix) + func.getName()).str(); OpBuilder moduleBuilder(func.getParentRegion()); LLVMFuncOp wrapper = moduleBuilder.create( func.getLoc(), wrapperName, wrapperTy, LLVM::Linkage::External); // Create the function body. Block &body = *wrapper.addEntryBlock(); auto builder = OpBuilder::atBlockBegin(&body); auto callArgs = loadCallArgs(body.getArgument(0), funcTy, builder, func.getLoc()); auto call = builder.create(func.getLoc(), func, callArgs); storeWrapperResults(call, body.getArgument(1), builder, func.getLoc()); builder.create(func.getLoc(), ValueRange()); return wrapper; } namespace { class LowerToLLVM : public LowerToLLVMBase { void getDependentDialects(DialectRegistry ®istry) const override { registry.insert(); } void runOnOperation() override { auto module = getOperation(); auto *context = &getContext(); LLVMTypeConverter converter(context); OwningRewritePatternList patterns; LLVMConversionTarget target(*context); target.addDynamicallyLegalOp( [&](FuncOp op) { return converter.isSignatureLegal(op.getType()); }); populateCompilerRuntimePatterns(module, patterns, converter); target.addLegalOp(); populateStdToLLVMConversionPatterns(converter, patterns); patterns.insert(context); // TODO: Move these "std to std" legalizations to their own pass if we grow // lots of these patterns. populateExpandTanhPattern(patterns, context); if (failed(applyFullConversion(module, target, std::move(patterns)))) { return signalPassFailure(); } // Rewrite llvm.mlir.addressof ops that reference the original exported // functions from the module to instead refer to wrapper functions. // These wrapper functions have a fixed ABI // (`void f(void **inputs, void **results)`) which we can interface to from // external code without dealing with platform-dependent // register-level calling conventions. We embed enough information in the // module metadata to make sure that calling code can e.g. preallocate // enough outputs and with the right types to safely funnel through this // convention. module.walk([&](LLVM::AddressOfOp op) { auto originalFunc = module.lookupSymbol(op.global_name()); if (!originalFunc) return; auto wrapper = createWrapperFunc(originalFunc); op.getResult().setType(wrapper.getType().getPointerTo()); Builder builder(op.getContext()); op.setAttr("global_name", builder.getSymbolRefAttr(wrapper.getName())); }); } }; } // namespace std::unique_ptr> mlir::NPCOMP::createLowerToLLVMPass() { return std::make_unique(); }