//===- NumpyOps.cpp - Core numpy dialect ops --------------------*- C++ -*-===// // // This file is licensed under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "npcomp/Dialect/Numpy/IR/NumpyOps.h" #include "mlir/IR/Builders.h" #include "mlir/IR/FunctionImplementation.h" #include "mlir/IR/OpImplementation.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/TypeUtilities.h" #include "npcomp/Dialect/Basicpy/IR/BasicpyDialect.h" #include "npcomp/Dialect/Numpy/IR/NumpyDialect.h" using namespace mlir; using namespace mlir::NPCOMP; using namespace mlir::NPCOMP::Numpy; //----------------------------------------------------------------------------// // Type inference //----------------------------------------------------------------------------// /// Adds constraints to relating a unary op that accepts and returns either /// tensor or ndarray types where the dtype should be the same. /// Type constraints are added on the dtype, not the outer object type. static void constrainUnaryDtypeInvariantOp(Typing::CPA::Context &context, Value source, Value dest, Operation *op) { auto &env = context.getCurrentEnvironment(); auto *sourceTn = llvm::dyn_cast(env.mapValueToType(source)); auto *destTn = llvm::dyn_cast(env.mapValueToType(dest)); if (sourceTn && destTn && sourceTn->getFieldCount() == 1 && destTn->getFieldCount() == 1) { context.getConstraint(sourceTn->getFieldTypes().front(), destTn->getFieldTypes().front()); } } void CreateArrayFromTensorOp::addCPAConstraints(Typing::CPA::Context &context) { constrainUnaryDtypeInvariantOp(context, source(), dest(), *this); } void CopyToTensorOp::addCPAConstraints(Typing::CPA::Context &context) { constrainUnaryDtypeInvariantOp(context, source(), dest(), *this); } void BuiltinUfuncCallOp::addCPAConstraints(Typing::CPA::Context &context) { // TODO: This should really be a function call chosen so as to promote // arguments. For now, though, we just say that the result is constrained // to the inputs. Note that not all ufuncs transfer types like this. // We just pretend this is two unary functions that write into the output. for (auto input : inputs()) { constrainUnaryDtypeInvariantOp(context, input, output(), *this); } } //----------------------------------------------------------------------------// // StaticInfoCast //----------------------------------------------------------------------------// bool StaticInfoCastOp::areCastCompatible(mlir::TypeRange inputs, mlir::TypeRange outputs) { auto input = inputs[0].cast(); auto output = outputs[0].cast(); if (input.getOptionalShape() && output.getOptionalShape()) { if (failed(verifyCompatibleShape(*input.getOptionalShape(), *output.getOptionalShape()))) return false; } return input.getDtype() == output.getDtype() || input.getDtype().isa() || output.getDtype().isa(); } //----------------------------------------------------------------------------// // CreateArrayFromTensorOp //----------------------------------------------------------------------------// namespace { /// Match create_array_from_tensor -> copy_to_tensor and elide in favor /// of the original tensor. class ElideCreateRedundantArrayFromTensor : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(CopyToTensorOp op, PatternRewriter &rewriter) const override { auto createArrayOp = dyn_cast_or_null(op.source().getDefiningOp()); if (createArrayOp && createArrayOp.dest().hasOneUse()) { rewriter.replaceOp(op, createArrayOp.source()); } return success(); } }; } // namespace void CopyToTensorOp::getCanonicalizationPatterns(RewritePatternSet &patterns, MLIRContext *context) { patterns.add(context); } #define GET_OP_CLASSES #include "npcomp/Dialect/Numpy/IR/NumpyOps.cpp.inc"