// RUN: torch-mlir-opt <%s -convert-torch-to-stablehlo -split-input-file -verify-diagnostics | FileCheck %s // CHECK-LABEL: func.func @torch.aten.index_select$basic( // CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,4],f32>, %[[ARG1:.*]]: !torch.vtensor<[2],si64>) -> !torch.vtensor<[2,4],f32> { // CHECK-DAG: %[[T0:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[?,4],f32> -> tensor // CHECK-DAG: %[[T1:.*]] = torch_c.to_builtin_tensor %[[ARG1]] : !torch.vtensor<[2],si64> -> tensor<2xi64> // CHECK: %[[INT0:.*]] = torch.constant.int 0 // CHECK: %[[C1_I64:.*]] = arith.constant 1 : i64 // CHECK: %[[C1:.*]] = arith.constant 1 : index // CHECK: %[[T2:.*]] = tensor.dim %[[T0]], %[[C1]] : tensor // CHECK: %[[T3:.*]] = arith.index_cast %[[T2]] : index to i64 // CHECK: %[[T4:.*]] = tensor.from_elements %[[C1_I64]], %[[T3]] : tensor<2xi64> // CHECK: %[[T5:.*]] = "stablehlo.dynamic_gather"(%[[T0]], %[[T1]], %[[T4]]) <{dimension_numbers = #stablehlo.gather, indices_are_sorted = false}> : (tensor, tensor<2xi64>, tensor<2xi64>) -> tensor<2x4xf32> // CHECK: %[[T6:.*]] = stablehlo.convert %[[T5]] : tensor<2x4xf32> // CHECK: %[[T7:.*]] = torch_c.from_builtin_tensor %[[T6]] : tensor<2x4xf32> -> !torch.vtensor<[2,4],f32> // CHECK: return %[[T7]] : !torch.vtensor<[2,4],f32> func.func @torch.aten.index_select$basic(%arg0: !torch.vtensor<[?,4],f32>, %arg1: !torch.vtensor<[2],si64>) -> !torch.vtensor<[2,4],f32> { %int0 = torch.constant.int 0 %0 = torch.aten.index_select %arg0, %int0, %arg1 : !torch.vtensor<[?,4],f32>, !torch.int, !torch.vtensor<[2],si64> -> !torch.vtensor<[2,4],f32> return %0 : !torch.vtensor<[2,4],f32> } // CHECK-LABEL: func.func @torch.aten.embedding$basic( // CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,?],f32>, %[[ARG1:.*]]: !torch.vtensor<[?],si64>) -> !torch.vtensor<[?,?],f32> { // CHECK-DAG: %[[T0:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK-DAG: %[[T1:.*]] = torch_c.to_builtin_tensor %[[ARG1]] : !torch.vtensor<[?],si64> -> tensor // CHECK: %[[FALSE:.*]] = torch.constant.bool false // CHECK: %[[INT:.*]]-1 = torch.constant.int -1 // CHECK: %[[C1_I64:.*]] = arith.constant 1 : i64 // CHECK: %[[C1:.*]] = arith.constant 1 : index // CHECK: %[[T2:.*]] = tensor.dim %[[T0]], %[[C1]] : tensor // CHECK: %[[T3:.*]] = arith.index_cast %[[T2]] : index to i64 // CHECK: %[[T4:.*]] = tensor.from_elements %[[C1_I64]], %[[T3]] : tensor<2xi64> // CHECK: %[[T5:.*]] = "stablehlo.dynamic_gather"(%[[T0]], %[[T1]], %[[T4]]) <{dimension_numbers = #stablehlo.gather, indices_are_sorted = false}> : (tensor, tensor, tensor<2xi64>) -> tensor // CHECK: %[[T6:.*]] = stablehlo.convert %[[T5]] : tensor // CHECK: %[[T7:.*]] = torch_c.from_builtin_tensor %[[T6]] : tensor -> !torch.vtensor<[?,?],f32> // CHECK: return %[[T7]] : !torch.vtensor<[?,?],f32> func.func @torch.aten.embedding$basic(%weight: !torch.vtensor<[?,?],f32>, %indices: !torch.vtensor<[?], si64>) -> !torch.vtensor<[?,?],f32> { %false = torch.constant.bool false %int-1 = torch.constant.int -1 %ret = torch.aten.embedding %weight, %indices, %int-1, %false, %false : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?], si64>, !torch.int, !torch.bool, !torch.bool -> !torch.vtensor<[?,?],f32> return %ret: !torch.vtensor<[?,?],f32> } // CHECK-LABEL: func.func @torch.aten.embedding$rank_two_indices( // CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,?],f32>, %[[ARG1:.*]]: !torch.vtensor<[?,1],si64>) -> !torch.vtensor<[?,1,?],f32> { // CHECK-DAG: %[[T0:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[?,?],f32> -> tensor // CHECK-DAG: %[[T1:.*]] = torch_c.to_builtin_tensor %[[ARG1]] : !torch.vtensor<[?,1],si64> -> tensor // CHECK: %[[FALSE:.*]] = torch.constant.bool false // CHECK: %[[INT:.*]]-1 = torch.constant.int -1 // CHECK: %[[C1_I64:.*]] = arith.constant 1 : i64 // CHECK: %[[C1:.*]] = arith.constant 1 : index // CHECK: %[[T2:.*]] = tensor.dim %[[T0]], %[[C1]] : tensor // CHECK: %[[T3:.*]] = arith.index_cast %[[T2]] : index to i64 // CHECK: %[[T4:.*]] = tensor.from_elements %[[C1_I64]], %[[T3]] : tensor<2xi64> // CHECK: %[[T5:.*]] = "stablehlo.dynamic_gather"(%[[T0]], %[[T1]], %[[T4]]) <{dimension_numbers = #stablehlo.gather, indices_are_sorted = false}> : (tensor, tensor, tensor<2xi64>) -> tensor // CHECK: %[[T6:.*]] = stablehlo.convert %[[T5]] : tensor // CHECK: %[[T7:.*]] = torch_c.from_builtin_tensor %[[T6]] : tensor -> !torch.vtensor<[?,1,?],f32> // CHECK: return %[[T7]] : !torch.vtensor<[?,1,?],f32> func.func @torch.aten.embedding$rank_two_indices(%weight: !torch.vtensor<[?,?],f32>, %indices: !torch.vtensor<[?,1], si64>) -> !torch.vtensor<[?,1,?],f32> { %false = torch.constant.bool false %int-1 = torch.constant.int -1 %ret = torch.aten.embedding %weight, %indices, %int-1, %false, %false : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,1], si64>, !torch.int, !torch.bool, !torch.bool -> !torch.vtensor<[?,1,?],f32> return %ret: !torch.vtensor<[?,1,?],f32> }