//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // Also available under a BSD-style license. See LICENSE. // //===----------------------------------------------------------------------===// #include "torch-mlir/Conversion/TorchConversionToMLProgram/TorchConversionToMLProgram.h" #include "../PassDetail.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/MLProgram/IR/MLProgram.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/MLIRContext.h" #include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h" #include "torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h" using namespace mlir; using namespace mlir::torch; using namespace mlir::torch::Torch; using namespace mlir::torch::TorchConversion; static constexpr StringRef getSeedGobalVarName() { return "global_seed"; } // Declare a tensor global variable for the seed. static void createGlobalVariableForSeed(OpBuilder &b, ModuleOp module) { b.setInsertionPointToStart(module.getBody()); Type elemTy = b.getI64Type(); auto tensorType = RankedTensorType::get({}, elemTy); b.create( UnknownLoc::get(b.getContext()), /*sym_name=*/getSeedGobalVarName(), /*type=*/tensorType, /*is_mutable=*/true, /*value=*/DenseIntElementsAttr::get(tensorType, {APInt(64, 0)}), /*sym_visibility=*/b.getStringAttr("private")); } namespace { class ConvertGetNextSeedOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(GetNextSeedOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Location loc = op.getLoc(); // Generate sequence for getting the next seed with LCG step: // nextSeed = (multiplier * currentSeed + incrementStep) mod 2^64. // Refer to https://en.wikipedia.org/wiki/Linear_congruential_generator. // Get the current seed value. auto tensorType = RankedTensorType::get({}, rewriter.getI64Type()); Value globalVar = rewriter.create( loc, tensorType, SymbolRefAttr::get(op->getContext(), getSeedGobalVarName())); Value currentSeed = rewriter.create(loc, globalVar); // The value of multiplier and incrementStep are referenced from // https://en.wikipedia.org/wiki/Linear_congruential_generator for 2^64. Value multiplier = rewriter.create( loc, rewriter.getI64IntegerAttr(6364136223846793005)); Value incrementStep = rewriter.create( loc, rewriter.getI64IntegerAttr(1442695040888963407)); // temp = multiplier * currentSeed + incrementStep Value mul = rewriter.create(loc, currentSeed, multiplier); Value seed = rewriter.create(loc, mul, incrementStep); globalVar = rewriter.create(loc, seed, globalVar, ValueRange()); rewriter.create( loc, SymbolRefAttr::get(op->getContext(), getSeedGobalVarName()), globalVar); rewriter.replaceOp(op, seed); return success(); } }; } // namespace // ----------------------------------------------------------------------------- // The pass // ----------------------------------------------------------------------------- namespace { class ConvertTorchConversionToMLProgram : public ConvertTorchConversionToMLProgramBase< ConvertTorchConversionToMLProgram> { public: void getDependentDialects(DialectRegistry ®istry) const override { registry.insert(); registry.insert(); registry.insert(); TorchConversion::getBackendTypeConversionDependentDialects(registry); } void runOnOperation() override { MLIRContext *context = &getContext(); ConversionTarget target(*context); target.addLegalDialect(); TypeConverter typeConverter; typeConverter.addConversion([](Type type) { return type; }); TorchConversion::setupBackendTypeConversion(target, typeConverter); auto module = getOperation()->getParentOfType(); OpBuilder b(module.getBodyRegion()); createGlobalVariableForSeed(b, module); RewritePatternSet patterns(context); target.addIllegalOp(); patterns.add(typeConverter, context); if (failed(applyPartialConversion(getOperation(), target, std::move(patterns)))) return signalPassFailure(); } }; } // namespace std::unique_ptr> mlir::torch::createConvertTorchConversionToMLProgramPass() { return std::make_unique(); }