//===- MaximizeValueSemantics.cpp --------------------------------*- C++-*-===// // // This file is licensed under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // Also available under a BSD-style license. See LICENSE. // //===----------------------------------------------------------------------===// #include "PassDetail.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/PatternMatch.h" #include "mlir/Transforms/GreedyPatternRewriteDriver.h" #include "torch-mlir/Dialect/Torch/IR/TorchOps.h" #include "torch-mlir/Dialect/Torch/Transforms/Passes.h" #include "torch-mlir/Dialect/Torch/Utils/Utils.h" using namespace mlir; using namespace mlir::torch; using namespace mlir::torch::Torch; static Value assertNonValueTensor(Value tensor) { assert(isa(tensor.getType()) && "tensor is expected to be a non-value tensor"); return tensor; } // A cast-like op is an op that does not modify the contents, shape, and dtype // of the input tensor. In other words, it is an op that only serves to encode // compile time information, but at runtime the op behaves like a no-op. static bool isCastLikeOp(Operation *op) { return isa(op); } // Given a `value`, this function goes up the use-def chain and finds the // largest sequence of consecutive cast-like ops. The returned set contains all // the aliases that are identical to `value`, and have only been transformed by // cast-like ops. static DenseSet getCastLikeAliasesOf(Value value) { Operation *currentOp = value.getDefiningOp(); DenseSet result; while (isCastLikeOp(currentOp)) { Value operand = assertNonValueTensor(currentOp->getOperand(0)); result.insert(operand); currentOp = operand.getDefiningOp(); } return result; } namespace { class AbstractlyInterpretCopyToNonValueTensorOpUsersWithinABlock : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; // Used to represent all of the interpreted ops that have at least // one non-value tensor as input or output. struct InterpretedOps { SmallVector copyLikeOps; SmallVector viewLikeOps; SmallVector overwriteTensorContentsOps; std::optional returnOp; }; // Check that graph rewriting is possible by doing an abstract // interpretation within a single basic block. If rewriting is // possible, the interpreted ops are returned split into their // respective categories. static FailureOr abstractlyInterpretSlice( CopyToNonValueTensorOp copyToNonValueTensor, const DenseMap> &nonValueTensorsUsedByOp, PatternRewriter &rewriter) { // Sort by order in the block, so we can abstractly interpret the ops. SmallVector nonValueTensorUsers( llvm::make_first_range(nonValueTensorsUsedByOp)); llvm::sort(nonValueTensorUsers, [](Operation *lhs, Operation *rhs) { return lhs->isBeforeInBlock(rhs); }); // We track the available aliases at each point as well as split the // users into view-like, copy-to-value, and overwrite ops as we walk // forward. InterpretedOps result; result.copyLikeOps.push_back(copyToNonValueTensor); DenseSet availableAliases{ assertNonValueTensor(copyToNonValueTensor.getResult())}; for (Operation *user : nonValueTensorUsers) { for (Value operand : nonValueTensorsUsedByOp.lookup(user)) { if (!availableAliases.contains(operand)) { return rewriter.notifyMatchFailure( copyToNonValueTensor, "operand of op is not a valid tensor alias"); } } if (isViewLikeOp(user)) { Value userResult = user->getResult(0); // View-like ops produce a new alias available to later ops. // However, if the view-like op has been partially converted // to use value semantics (which happens for example with ops // that take two aliases as input), then it is possible that the // op no longer generates an alias. if (isa(userResult.getType())) availableAliases.insert(userResult); result.viewLikeOps.push_back(user); } else if (auto copyToValueTensor = dyn_cast(user)) { result.copyLikeOps.push_back(copyToValueTensor); } else if (auto overwrite = dyn_cast(user)) { // To simplify the analysis, we only support the case where the // only aliases used after an overwrite are the aliases generated // after plus the alias being overwritten and any aliases that are // simply a cast of the overwritten alias. availableAliases.clear(); Value overwritten = overwrite.getOverwritten(); availableAliases.insert(assertNonValueTensor(overwritten)); DenseSet castLikeAliases = getCastLikeAliasesOf(overwritten); availableAliases.insert(castLikeAliases.begin(), castLikeAliases.end()); result.overwriteTensorContentsOps.push_back(overwrite); } else if (auto returnOp = dyn_cast(user)) { result.returnOp = returnOp; } else { return rewriter.notifyMatchFailure( copyToNonValueTensor, "unsupported op `" + user->getName().getStringRef() + "` encountered during abstract analysis"); } } return result; } // Rewrite slice composed of the interpreted ops so that the slice uses // value semantics everywhere. static void rewriteSlice(const InterpretedOps &ops, PatternRewriter &rewriter) { DenseMap originalReturnTypes; if (ops.returnOp.has_value()) { auto returnOp = ops.returnOp.value(); for (auto operand : llvm::enumerate(returnOp->getOperands())) { auto type = operand.value().getType(); if (!isa(type)) continue; originalReturnTypes[operand.index()] = type; } } // The rewriting for the overwrite op involves replacing all uses of its // non-value tensor operand with its value tensor operand. Since the // rewriting of other ops can potentially change the non-value tensor // operand to a value tensor, this rewriting MUST happen first to avoid // wrongly replacing operands that were previously not a view of the // overwritten tensor. for (OverwriteTensorContentsOp overwrite : llvm::reverse(ops.overwriteTensorContentsOps)) { Value overwritten = assertNonValueTensor(overwrite.getOverwritten()); // Cast-like aliases represent the exact same tensor at runtime as the // overwritten alias, since casts only encode compile time information. // Therefore, here we replace the overwritten value and any cast-like // aliases of it with the overwrite value. DenseSet overwrittenAliases = getCastLikeAliasesOf(overwritten); overwrittenAliases.insert(overwritten); for (Value alias : overwrittenAliases) { alias.replaceUsesWithIf( overwrite.getValue(), [&](const OpOperand &operand) { return !operand.getOwner()->isBeforeInBlock(overwrite); }); } rewriter.eraseOp(overwrite); } for (Operation *copyLikeOp : ops.copyLikeOps) rewriter.replaceOp(copyLikeOp, copyLikeOp->getOperand(0)); // Replace return type of view-like ops with value-semantics type variant. for (Operation *viewLikeOp : ops.viewLikeOps) { rewriter.modifyOpInPlace(viewLikeOp, [&] { Value result = viewLikeOp->getResult(0); auto resultType = dyn_cast(result.getType()); if (resultType) result.setType(resultType.getWithValueSemantics()); }); } if (ops.returnOp.has_value()) { auto returnOp = ops.returnOp.value(); for (int i = 0, e = returnOp->getNumOperands(); i < e; i++) { OpOperand &operand = returnOp->getOpOperand(i); auto it = originalReturnTypes.find(i); if (it == originalReturnTypes.end()) continue; auto originalType = cast(it->second); rewriter.setInsertionPoint(returnOp); Value newReturnValue = copyTensorToType(rewriter, returnOp->getLoc(), originalType, operand.get()); operand.set(newReturnValue); } } } LogicalResult matchAndRewrite(CopyToNonValueTensorOp copy, PatternRewriter &rewriter) const override { // Find a subgraph starting with this CopyToNonValueTensorOp, and // terminating at CopyToValueTensorOp's, possibly with intervening view-like // ops and overwrites. This also catches the special case of a // CopyToNonValueTensorOp that trivially feeds into CopyToValueTensorOp's. DenseMap> nonValueTensorsUsedByOp; // Some view-like ops take more than one non-value tensor as input (such as // `aten.view_as`). For these ops, we assume that the tensor view that gets // returned by the op is a view of the first operand of the op. // View-like ops that return a non-value tensor and have a view of the // operand of `copy.to_tensor` as the first operand. DenseSet validViewLikeOps; // View-like ops that return a non-value tensor and have a view of the // operand of `copy.to_tensor` as an operand other than the first operand. DenseSet viewLikeOpsToCheck; using OpOperandRefs = SmallVector>; OpOperandRefs workList(copy.getResult().getUses()); while (!workList.empty()) { OpOperand &operand = workList.pop_back_val(); Operation *op = operand.getOwner(); if (op->getBlock() != copy->getBlock()) { return rewriter.notifyMatchFailure( copy, "can only analyze within a single basic block"); } if (isViewLikeOp(op)) { // We currently only support view-like ops with one tensor output. if (op->getNumResults() != 1 || !isa(op->getResult(0).getType())) { return rewriter.notifyMatchFailure( copy, "unsupported: view-like ops must have one tensor output, " "and the tensor output must be the first result"); } Value opResult = op->getResult(0); // There are cases where a view-like op will be partially converted to // value semantics, resulting in at least one of the inputs being a // non-value tensor and the output being a value tensor. If this is the // case then there is no need to look at the users of the result of the // op. if (isa(opResult.getType())) { if (operand.getOperandNumber() == 0) { validViewLikeOps.insert(op); llvm::append_range(workList, opResult.getUses()); } else { viewLikeOpsToCheck.insert(op); } } } nonValueTensorsUsedByOp[op].push_back( assertNonValueTensor(operand.get())); } // Nothing to do if there is just a ReturnOp -- we know that we won't be // rewriting anything, since we must preserve the ReturnOp's original type. if (llvm::hasSingleElement(nonValueTensorsUsedByOp) && isa(nonValueTensorsUsedByOp.begin()->first)) { return failure(); } if (llvm::any_of(viewLikeOpsToCheck, [&](Operation *op) { return !validViewLikeOps.contains(op); })) { return rewriter.notifyMatchFailure( copy, "if a view-like op returns a non-value tensor, the first " "operand must be a view of the operand of the `copy.to_tensor` " "op"); } FailureOr interpretedOps = abstractlyInterpretSlice(copy, nonValueTensorsUsedByOp, rewriter); if (failed(LogicalResult(interpretedOps))) return failure(); rewriteSlice(*interpretedOps, rewriter); return success(); } }; } // namespace namespace { // Calculate a forward slice starting from a CopyToNonValueTensorOp // and ending at CopyToValueTensorOp's. If all intervening ops // are just view-like operations (i.e. no mutation), then we can trivially // convert them all to value semantics. // This pattern handles the case where views span multiple basic blocks, // which is currently not supported by // `AbstractlyInterpretCopyToNonValueTensorOpUsersWithinABlock`. class RewriteViewLikeSubgraph : public OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(CopyToNonValueTensorOp copy, PatternRewriter &rewriter) const override { // Find a subgraph starting with this CopyToNonValueTensorOp, and // terminating at CopyToValueTensorOp's or ReturnOp's, possibly with // intervening view-like ops. // This also catches the special case of a CopyToNonValueTensorOp that // trivially feeds into CopyToValueTensorOp's. SmallVector viewLikeOps; SmallVector copyToValueTensorOps; SmallVector returnOps; auto workList = llvm::to_vector<6>(copy.getResult().getUsers()); // We currently only support view-like ops with one tensor input and one // tensor output, meaning that the tensor use-def chains form a tree. // This will not be the case for an op like `torch.aten.view_as`, so // we will need to add a set to prune duplicate visitation. while (!workList.empty()) { Operation *op = workList.pop_back_val(); if (auto copyToValueTensor = dyn_cast(op)) { copyToValueTensorOps.push_back(copyToValueTensor); } else if (auto returnOp = dyn_cast(op)) { returnOps.push_back(returnOp); } else if (isViewLikeOp(op)) { viewLikeOps.push_back(op); llvm::append_range(workList, op->getResult(0).getUsers()); } else { return rewriter.notifyMatchFailure( copy, "can only handle these transitive user ops"); } } if (copyToValueTensorOps.empty() && viewLikeOps.empty()) return rewriter.notifyMatchFailure(copy, "no types to change"); // All CopyToValueTensorOp operands will be changed to the correct type // by the logic below. for (CopyToValueTensorOp op : copyToValueTensorOps) rewriter.replaceOp(op, op.getOperand()); // All uses of `copy` will be updated by the logic below. copy.replaceAllUsesWith(copy.getOperand()); // Keep track of the original types of any view-like ops, so that we can // correctly copy them back to their mlir::func::ReturnOp's expected types. DenseMap originalTypes; for (Operation *op : viewLikeOps) { rewriter.modifyOpInPlace(op, [&]() { if (auto nonValueTensorType = dyn_cast(op->getResult(0).getType())) { originalTypes[op->getResult(0)] = nonValueTensorType; op->getResult(0).setType(nonValueTensorType.getWithValueSemantics()); } }); } // For ReturnOp's, we need to update the operands to their original types. for (mlir::func::ReturnOp op : returnOps) { for (int i = 0, e = op->getNumOperands(); i < e; i++) { OpOperand &operand = op->getOpOperand(i); auto it = originalTypes.find(operand.get()); if (it == originalTypes.end()) continue; auto originalType = cast(it->second); rewriter.setInsertionPoint(op); Value newReturnValue = copyTensorToType(rewriter, op->getLoc(), originalType, operand.get()); operand.set(newReturnValue); } } return success(); } }; } // namespace namespace { class MaximizeValueSemanticsPass : public MaximizeValueSemanticsBase { void runOnOperation() override { MLIRContext *context = &getContext(); auto func = getOperation(); RewritePatternSet patterns(context); patterns.insert(context); (void)applyPatternsAndFoldGreedily(func, std::move(patterns)); } }; } // namespace std::unique_ptr> mlir::torch::Torch::createMaximizeValueSemanticsPass() { return std::make_unique(); }