//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // Also available under a BSD-style license. See LICENSE. // //===----------------------------------------------------------------------===// #include "torch-mlir/Conversion/TorchToSCF/TorchToSCF.h" #include "../PassDetail.h" #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" #include "mlir/Dialect/SCF/IR/SCF.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/Transforms/DialectConversion.h" #include "torch-mlir/Dialect/Torch/IR/TorchDialect.h" #include "torch-mlir/Dialect/Torch/IR/TorchOps.h" #include "torch-mlir/Dialect/Torch/IR/TorchTypes.h" #include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionDialect.h" #include "torch-mlir/Dialect/TorchConversion/Transforms/BackendTypeConversion.h" using namespace mlir; using namespace mlir::torch; using namespace mlir::torch::Torch; namespace { class ConvertTorchPrimIfYieldOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(PrimIfYieldOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { rewriter.replaceOpWithNewOp(op, adaptor.getOperands()); return success(); } }; } // namespace namespace { class ConvertTorchPrimIfOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(PrimIfOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { SmallVector newResultTypes; if (failed(getTypeConverter()->convertTypes(op.getResultTypes(), newResultTypes))) return rewriter.notifyMatchFailure(op, "could not convert PrimIfOp outputs"); auto scfIf = rewriter.create(op->getLoc(), newResultTypes, adaptor.condition(), /*withElseRegion=*/true); auto inlineIfCase = [&](Region &srcRegion, Region &dstRegion) { rewriter.inlineRegionBefore(srcRegion, dstRegion, dstRegion.begin()); rewriter.eraseBlock(&dstRegion.back()); }; inlineIfCase(op.thenRegion(), scfIf.getThenRegion()); inlineIfCase(op.elseRegion(), scfIf.getElseRegion()); rewriter.replaceOp(op, scfIf.getResults()); return success(); } }; } // namespace namespace { // Converts the Torch::PrimLoopOp which is ``While-like`` into scf::WhileOp. class ConvertTorchPrimLoopWhileLikeOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(PrimLoopOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { // Return failure on for-like loops. if (op.isForLike()) return failure(); TypeConverter *typeConverter = getTypeConverter(); SmallVector newResultTypes; if (failed( typeConverter->convertTypes(op.getResultTypes(), newResultTypes))) return rewriter.notifyMatchFailure( op, "could not convert PrimLoopOp outputs"); // Create scf.while operation using the operands of torch::primloop. The // first argument of the primloop correspond to `maxTripCount` which // can be omitted in the `scf.while` operation. Value condition = adaptor.initialCondition(); ValueRange iterArgsInit = adaptor.iterArgsInit(); SmallVector scfWhileOpOperands{condition}; scfWhileOpOperands.append(iterArgsInit.begin(), iterArgsInit.end()); auto scfWhileOp = rewriter.create( op->getLoc(), newResultTypes, scfWhileOpOperands); // Populate the before region of the scf.while operation. The `before` // region will have only one block and the arguments of the block must match // the arguments of `scf.while` operation. SmallVector beforeRegionArgTypes; SmallVector beforeRegionArgLocs; for (Value value : scfWhileOp->getOperands()) { beforeRegionArgTypes.push_back(value.getType()); beforeRegionArgLocs.push_back(value.getLoc()); } auto *beforeBlock = rewriter.createBlock( &scfWhileOp.getBefore(), scfWhileOp.getBefore().begin(), beforeRegionArgTypes, beforeRegionArgLocs); rewriter.setInsertionPointToEnd(beforeBlock); // Fetch the condition passed as the iter argument. Pass rest of the // arguments to the after block. auto scfConditionOp = rewriter.create( op.getLoc(), beforeBlock->getArgument(0), beforeBlock->getArguments().drop_front()); // Populate the after region. if (!scfWhileOp.getAfter().empty()) rewriter.eraseBlock(&scfWhileOp.getAfter().back()); SmallVector afterRegionArgTypes; SmallVector afterRegionArgLocs; for (Value value : scfConditionOp.getArgs()) { afterRegionArgTypes.push_back(value.getType()); afterRegionArgLocs.push_back(value.getLoc()); } auto *afterBlock = rewriter.createBlock( &scfWhileOp.getAfter(), scfWhileOp.getAfter().begin(), afterRegionArgTypes, afterRegionArgLocs); // Rewrite uses of the torch loop block arguments to the new while-loop // "after" arguments. Leave the induction variable of prim loop(first // argument) because while like prim loops does not use the induction // variable. for (const auto &barg : enumerate(op.region().front().getArguments().drop_front())) { Value to = afterBlock->getArgument(barg.index()); Type targetType = to.getType(); Value torchArg = to; // If the target type is non-torch type, then use TypeConverter to convert // the type of the source. if (targetType.isa()) { targetType = Torch::FloatType::get(op->getContext()); torchArg = typeConverter->materializeSourceConversion( rewriter, scfWhileOp.getLoc(), targetType, {to}); } else if (targetType.isa()) { unsigned bitWidth = targetType.getIntOrFloatBitWidth(); if (bitWidth == 1) targetType = Torch::BoolType::get(op->getContext()); else targetType = Torch::IntType::get(op->getContext()); torchArg = typeConverter->materializeSourceConversion( rewriter, scfWhileOp.getLoc(), targetType, {to}); } if (!torchArg) return rewriter.notifyMatchFailure(op, "unsupported type of the operand"); barg.value().replaceAllUsesWith(torchArg); } // Inline torch loop body operations into 'after' region. PatternRewriter::InsertionGuard guard(rewriter); for (auto &operation : llvm::make_early_inc_range(op.region().front().getOperations())) { if (auto primLoopConditionOp = dyn_cast(operation)) { // Fix up the terminator. SmallVector loopConditionIterArgs; Value torchShouldContinue = primLoopConditionOp.shouldContinue(); Value shouldContinue = typeConverter->materializeTargetConversion( rewriter, scfWhileOp->getLoc(), typeConverter->convertType(torchShouldContinue.getType()), {torchShouldContinue}); if (!shouldContinue) return rewriter.notifyMatchFailure(op, "unsupported type of the operand"); loopConditionIterArgs.push_back(shouldContinue); for (auto torchArg : primLoopConditionOp.iterArgs()) { Type torchType = torchArg.getType(); // If the argument is a torch tensor, directly add it in the list of // iter args. if (torchType.isa()) { loopConditionIterArgs.push_back(torchArg); continue; } Value arg = typeConverter->materializeTargetConversion( rewriter, scfWhileOp->getLoc(), typeConverter->convertType(torchArg.getType()), {torchArg}); if (!arg) return rewriter.notifyMatchFailure( op, "unsupported type of the operand"); loopConditionIterArgs.push_back(arg); } rewriter.create(scfWhileOp.getLoc(), loopConditionIterArgs); } else { operation.moveBefore(afterBlock, afterBlock->end()); } } rewriter.replaceOp(op, scfWhileOp->getResults()); return success(); } }; } // namespace namespace { // Converts the Torch::PrimLoopOp which is ``For-like`` into scf::ForOp. class ConvertTorchPrimLoopForLikeOp : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(PrimLoopOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { // Return failure on while-like loops. if (!op.isForLike()) return failure(); TypeConverter *typeConverter = getTypeConverter(); SmallVector newResultTypes; if (failed( typeConverter->convertTypes(op.getResultTypes(), newResultTypes))) return rewriter.notifyMatchFailure( op, "could not convert PrimLoopOp outputs"); // Calculate the lower bound, upper bound and step indices. Currently only // lower-bound = 0 and step = 1 is supported. Location loc = op.getLoc(); Value lowerBoundIndex = rewriter.create(loc, 0); Value stepIndex = rewriter.create(loc, 1); Value upperBoundIndex = rewriter.create( loc, rewriter.getIndexType(), adaptor.maxTripCount()); auto scfForOp = rewriter.create(loc, lowerBoundIndex, upperBoundIndex, stepIndex, adaptor.iterArgsInit()); SmallVector regionArgTypes; SmallVector regionArgLocs; for (Value value : scfForOp.getLoopBody().front().getArguments()) { regionArgTypes.push_back(value.getType()); regionArgLocs.push_back(value.getLoc()); } // Populate the loop body region. if (!scfForOp.getLoopBody().empty()) rewriter.eraseBlock(&scfForOp.getLoopBody().back()); auto *block = rewriter.createBlock(&scfForOp.getLoopBody(), scfForOp.getLoopBody().begin(), regionArgTypes, regionArgLocs); // Rewrite uses of the torch loop block arguments to the new for-loop // "block" arguments for (const auto &barg : enumerate(op.region().front().getArguments())) { Value to = block->getArgument(barg.index()); if (to.getType().isa()) to = rewriter.create(loc, rewriter.getI64Type(), to); Type targetType = to.getType(); Value torchArg = to; // If the target type is non-torch type, then use TypeConverter to convert // the type of the source. if (targetType.isa()) { targetType = Torch::FloatType::get(op->getContext()); torchArg = typeConverter->materializeSourceConversion( rewriter, scfForOp.getLoc(), targetType, {to}); } else if (targetType.isa()) { unsigned bitWidth = targetType.getIntOrFloatBitWidth(); if (bitWidth == 1) targetType = Torch::BoolType::get(op->getContext()); else targetType = Torch::IntType::get(op->getContext()); torchArg = typeConverter->materializeSourceConversion( rewriter, scfForOp.getLoc(), targetType, {to}); } if (!torchArg) return rewriter.notifyMatchFailure(op, "unsupported type of the operand"); barg.value().replaceAllUsesWith(torchArg); } // Inline torch loop body operations into 'after' region. PatternRewriter::InsertionGuard guard(rewriter); for (auto &operation : llvm::make_early_inc_range(op.region().front().getOperations())) { if (auto primLoopConditionOp = dyn_cast(operation)) { // Fix up the terminator. SmallVector loopConditionIterArgs; for (auto torchArg : primLoopConditionOp.iterArgs()) { Type torchType = torchArg.getType(); // If the argument is a torch tensor, directly add it in the list of // iter args. if (torchType.isa()) { loopConditionIterArgs.push_back(torchArg); continue; } Value arg = typeConverter->materializeTargetConversion( rewriter, scfForOp.getLoc(), typeConverter->convertType(torchArg.getType()), {torchArg}); if (!arg) return rewriter.notifyMatchFailure( op, "unsupported type of the operand"); loopConditionIterArgs.push_back(arg); } rewriter.create(scfForOp.getLoc(), loopConditionIterArgs); } else { operation.moveBefore(block, block->end()); } } rewriter.replaceOp(op, scfForOp->getResults()); return success(); } }; } // namespace namespace { class ConvertTorchToSCF : public ConvertTorchToSCFBase { public: void getDependentDialects(DialectRegistry ®istry) const override { registry.insert(); TorchConversion::getBackendTypeConversionDependentDialects(registry); } void runOnOperation() override { MLIRContext *context = &getContext(); ConversionTarget target(*context); target.addLegalDialect(); TypeConverter typeConverter; typeConverter.addConversion([](Type type) { return type; }); TorchConversion::setupBackendTypeConversion(target, typeConverter); RewritePatternSet patterns(context); target.addIllegalOp(); patterns.add(typeConverter, context); target.addIllegalOp(); patterns.add(typeConverter, context); target.addIllegalOp(); patterns.add(typeConverter, context); patterns.add(typeConverter, context); if (failed(applyPartialConversion(getOperation(), target, std::move(patterns)))) return signalPassFailure(); } }; } // namespace std::unique_ptr> mlir::torch::createConvertTorchToSCFPass() { return std::make_unique(); }