# Torch-MLIR Lazy Tensor Core Backend Examples Refer to the main documentation [here](ltc_backend.md). ## Example Usage ```python import torch import torch._lazy import torch_mlir.reference_lazy_backend._REFERENCE_LAZY_BACKEND as lazy_backend # Register the example LTC backend. lazy_backend._initialize() device = 'lazy' # Create some tensors and perform operations. inputs = torch.tensor([[1, 2, 3, 4, 5]], dtype=torch.float32, device=device) outputs = torch.tanh(inputs) # Mark end of training/evaluation iteration and lower traced graph. torch._lazy.mark_step() print('Results:', outputs) # Optionally dump MLIR graph generated from LTC trace. computation = lazy_backend.get_latest_computation() if computation: print(computation.debug_string()) ``` ``` Received 1 computation instances at Compile! Received 1 arguments, and returned 2 results during ExecuteCompile! Results: tensor([[0.7616, 0.9640, 0.9951, 0.9993, 0.9999]], device='lazy:0') JIT Graph: graph(%p0 : Float(1, 5)): %1 : Float(1, 5) = aten::tanh(%p0) return (%p0, %1) MLIR: func.func @graph(%arg0: !torch.vtensor<[1,5],f32>) -> (!torch.vtensor<[1,5],f32>, !torch.vtensor<[1,5],f32>) { %0 = torch.aten.tanh %arg0 : !torch.vtensor<[1,5],f32> -> !torch.vtensor<[1,5],f32> return %arg0, %0 : !torch.vtensor<[1,5],f32>, !torch.vtensor<[1,5],f32> } Input/Output Alias Mapping: Output: 0 -> Input param: 0 In Mark Step: true ``` ## Example Models There are also examples of a [HuggingFace BERT](../examples/ltc_backend_bert.py) and [MNIST](../examples/ltc_backend_mnist.py) model running on the example LTC backend.