# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception # Also available under a BSD-style license. See LICENSE. # RUN: %PYTHON %s | FileCheck %s import torch import torch_mlir class TanhModule(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x): return torch.ops.aten.tanh(x) tanh_example_input = torch.ones(2, 3) # Simplest case: One example argument. print(torch_mlir.compile(TanhModule(), tanh_example_input, use_tracing=True)) # CHECK-LABEL: @forward # CHECK: torch.aten.tanh %{{.*}} : !torch.vtensor<[2,3],f32> -> !torch.vtensor<[2,3],f32> # Simplest case: Passed as a tuple. print(torch_mlir.compile(TanhModule(), (tanh_example_input,), use_tracing=True)) # CHECK-LABEL: @forward # CHECK: torch.aten.tanh %{{.*}} : !torch.vtensor<[2,3],f32> -> !torch.vtensor<[2,3],f32> # Simplest case: Passed as a list. print(torch_mlir.compile(TanhModule(), [tanh_example_input], use_tracing=True)) # CHECK-LABEL: @forward # CHECK: torch.aten.tanh %{{.*}} : !torch.vtensor<[2,3],f32> -> !torch.vtensor<[2,3],f32> # TensorPlaceholder support. placeholder = torch_mlir.TensorPlaceholder.like( tanh_example_input, dynamic_axes=[1]) print(torch_mlir.compile(TanhModule(), [placeholder], use_tracing=True, ignore_traced_shapes=True)) # CHECK-LABEL: @forward # CHECK: torch.aten.tanh %{{.*}} : !torch.vtensor<[2,?],f32> -> !torch.vtensor<[2,?],f32> try: # CHECK: `ignore_traced_shapes` requires `use_tracing` torch_mlir.compile(TanhModule(), [placeholder], ignore_traced_shapes=True) except Exception as e: print(e) try: # CHECK: TensorPlaceholder can only be used with tracing when `ignore_traced_shapes=True` torch_mlir.compile(TanhModule(), [placeholder], use_tracing=True) except Exception as e: print(e)