# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception # Also available under a BSD-style license. See LICENSE. # RUN: %PYTHON %s | FileCheck %s import torch from framework import run_test from torch_mlir.eager_mode.torch_mlir_dispatch import normalize_args_kwargs # CHECK: PASS - should_normalize @run_test def should_normalize(): target = torch.ops.aten.max_pool2d_with_indices.default input = torch.randn((1, 3, 32, 32)) kwargs = {"kernel_size": [3, 3]} golden = { "kernel_size": [3, 3], # This is due to the schema for max_pool2d_with_indices defining # the stride arg as int[2] stride=[]. "stride": [], "padding": [0, 0], "dilation": [1, 1], "ceil_mode": False, } new_kwargs = normalize_args_kwargs(target, (input,), kwargs) assert torch.allclose(new_kwargs["input"], input) for k, v in new_kwargs.items(): if k == "input": continue assert v == golden[k] # CHECK: FAIL - shouldnt_normalize1 # CHECK: Errors: missing a required argument: 'kernel_size' @run_test def shouldnt_normalize1(): target = torch.ops.aten.max_pool2d_with_indices.default args = (torch.randn((1, 3, 32, 32)),) kwargs = {"stride": []} normalize_args_kwargs(target, args, kwargs) # This next two tests are XPASS because of https://github.com/pytorch/pytorch/issues/75342 # I.e., they should fail but in fact they pass because of the upstream bug. # The reason for the bug is a fast path branch in operator_schemas.normalize_function # that doesn't do rigorous type checking, and hence lets type mistmatches slip through. # TODO(max): change these to FAIL when the upstream bug is fixed. # CHECK: XPASS - shouldnt_normalize2 @run_test(XPASS=True) def shouldnt_normalize2(): target = torch.ops.aten.max_pool2d_with_indices.default args = (torch.randn((1, 3, 32, 32)),) kwargs = {"kernel_size": []} normalize_args_kwargs(target, args, kwargs) # CHECK: XPASS - shouldnt_normalize3 @run_test(XPASS=True) def shouldnt_normalize3(): target = torch.ops.aten.max_pool2d_with_indices.default args = (torch.randn((1, 3, 32, 32)),) kwargs = {"kernel_size": [3, 3], "padding": None} normalize_args_kwargs(target, args, kwargs)