//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "npcomp/Dialect/Torch/IR/TorchOps.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/Matchers.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/TypeUtilities.h" #include "llvm/ADT/StringMap.h" using namespace mlir; using namespace mlir::NPCOMP; using namespace mlir::NPCOMP::Torch; //===----------------------------------------------------------------------===// // Utilities //===----------------------------------------------------------------------===// Value mlir::NPCOMP::Torch::copyTensorToType(OpBuilder &builder, Location loc, BaseTensorType newType, Value tensor) { auto originalType = tensor.getType().cast(); // Adjust the static information in the type to match between the original and // new types. if (!originalType.hasSameSizesAndDtype(newType)) { tensor = builder.create( loc, originalType.getWithSizesAndDtypeFrom(newType), tensor); } // Unless both the original and new types are both value tensors, we end // up creating one op that converts between the value and non-value tensor // domains. If both the original and new types are both non-value tensors, // then we do the copy by going to a value tensor and back. if (tensor.getType().isa()) tensor = builder.create(loc, tensor); if (newType.isa()) tensor = builder.create(loc, tensor); return tensor; } //===----------------------------------------------------------------------===// // MethodOp //===----------------------------------------------------------------------===// LogicalResult MethodOp::verifySymbolUses(SymbolTableCollection &symbolTable) { auto func = symbolTable.lookupNearestSymbolFrom(*this, function()); if (!func) return emitError() << "'@" << function() << "' does not reference a valid function"; if (func.getVisibility() != SymbolTable::Visibility::Private) return emitError() << "'@" << function() << "' must reference a private function"; if (func.isDeclaration()) return emitError() << "'@" << function() << "' must reference a function that is defined (not " "merely declared)"; auto expectedReceiverArgType = NnModuleType::get( getContext(), getOperation()->getParentOfType().getName()); if (func.getType().getNumInputs() == 0 || func.getType().getInput(0) != expectedReceiverArgType) { return emitError() << "the referenced function '" << function() << "' must have a first argument of type " << expectedReceiverArgType; } return success(); } //===----------------------------------------------------------------------===// // NnModuleOp //===----------------------------------------------------------------------===// static LogicalResult verify(NnModuleOp op) { for (Operation &child : *op.getBody()) if (!isa(&child)) return child.emitOpError() << "is not allowed inside 'torch.nn_module'"; return success(); } // PyTorch has a well-developed notion of subtyping. // // This is a restricted subset of it. // // TODO: Flesh this out. // TODO: Decide / properly model the distinction between PEP 483 / Python // subtyping vs "more static information". bool isValidSubtype(Type subtype, Type type) { if (subtype == type) return true; if (auto optional = type.dyn_cast()) return subtype == optional.getContainedType() || subtype.isa(); // TODO: This is not subtyping according to PEP 483. See description // of NonValueTensorType. if (subtype.isa() && type.isa() && type == NonValueTensorType::getWithLeastStaticInformation(type.getContext())) return true; return false; } LogicalResult NnModuleOp::verifySymbolUses(SymbolTableCollection &symbolTable) { auto classType = symbolTable.lookupNearestSymbolFrom(*this, getClassName()); if (!classType) return emitError() << "'" << getClassName() << "' does not reference a valid class type"; auto attrs = llvm::to_vector<6>(getBody()->getOps()); auto attrDefs = llvm::to_vector<6>(classType.getBody()->getOps()); if (attrs.size() != attrDefs.size()) return emitError() << "number of 'torch.slot's in a 'torch.nn_module' must " "match number of 'torch.attr's in " "the corresponding 'torch.class_type'"; for (int i = 0, e = attrs.size(); i != e; i++) { SlotOp attr = attrs[i]; AttrOp attrDef = attrDefs[i]; if (!isValidSubtype(attr.value().getType(), attrDef.type()) || attr.name() != attrDef.name()) { return attr.emitOpError() .append("is expected to match type and name of '", attrDef.getOperation(), "'") .attachNote(attrDef.getLoc()) .append("see torch.attr at corresponding index ", i, " here"); } } return success(); } //===----------------------------------------------------------------------===// // PrimListConstructOp //===----------------------------------------------------------------------===// static LogicalResult verify(PrimListConstructOp op) { auto resultType = op.getResult().getType(); auto resultElementType = resultType.dyn_cast().getContainedType(); auto matchResultElementType = [&](Type type) { return type.getTypeID() == resultElementType.getTypeID(); }; if (!llvm::all_of(op->getOperandTypes(), matchResultElementType)) { return op.emitError() << "operand types should have the same type as the " "list contained type"; } return success(); } //===----------------------------------------------------------------------===// // ClassTypeOp //===----------------------------------------------------------------------===// static LogicalResult verify(ClassTypeOp op) { llvm::StringMap namesToOps; for (Operation &child : op.getBody()->without_terminator()) { if (!isa(&child)) return child.emitOpError() << "is not allowed inside `torch.class_type`"; StringRef name; if (auto attr = dyn_cast(child)) name = attr.name(); else name = cast(child).name(); auto itAndWasInserted = namesToOps.insert({name, &child}); auto it = itAndWasInserted.first; bool wasInserted = itAndWasInserted.second; if (!wasInserted) { auto diag = op.emitOpError().append( "has duplicate attr/method with name '", name, "'"); diag.attachNote(it->second->getLoc()) .append("see first conflicting attr/method here"); diag.attachNote(child.getLoc()) .append("see second conflicting attr/method here"); return failure(); } } return success(); } //===----------------------------------------------------------------------===// // PrimLoopOp //===----------------------------------------------------------------------===// OperandRange PrimLoopOp::getSuccessorEntryOperands(unsigned index) { assert(index == 0); return iterArgsInit(); } void PrimLoopOp::getSuccessorRegions( Optional index, ArrayRef operands, SmallVectorImpl ®ions) { (void)operands; if (!index.hasValue()) { regions.emplace_back(®ion(), region().getArguments().slice(1)); return; } assert(*index == 0); regions.emplace_back(®ion(), region().getArguments().slice(1)); regions.emplace_back(getResults()); } //===----------------------------------------------------------------------===// // PrimIfOp //===----------------------------------------------------------------------===// static ParseResult parsePrimIfOp(OpAsmParser &parser, OperationState &result) { // Create the regions. result.regions.reserve(2); Region *thenRegion = result.addRegion(); Region *elseRegion = result.addRegion(); auto &builder = parser.getBuilder(); OpAsmParser::OperandType cond; Type boolType = builder.getType(); if (parser.parseOperand(cond) || parser.resolveOperand(cond, boolType, result.operands)) return failure(); // Parse results type list. if (parser.parseArrowTypeList(result.types)) return failure(); // Parse the 'then' region. if (parser.parseRegion(*thenRegion, /*arguments=*/{}, /*argTypes=*/{})) return failure(); // Parse the 'else' region. if (parser.parseKeyword("else")) return failure(); if (parser.parseRegion(*elseRegion, /*arguments=*/{}, /*argTypes=*/{})) return failure(); // Parse the optional attribute list. if (parser.parseOptionalAttrDict(result.attributes)) return failure(); return success(); } static void print(OpAsmPrinter &p, PrimIfOp op) { p << PrimIfOp::getOperationName() << " " << op.condition(); p << " -> (" << op.getResultTypes() << ")"; p.printRegion(op.thenRegion(), /*printEntryBlockArgs=*/false); p << " else"; p.printRegion(op.elseRegion(), /*printEntryBlockArgs=*/false); p.printOptionalAttrDict(op->getAttrs()); } void PrimIfOp::getSuccessorRegions(Optional index, ArrayRef operands, SmallVectorImpl ®ions) { // The `then` and the `else` region branch back to the parent operation. if (index.hasValue()) { regions.push_back(RegionSuccessor(getResults())); return; } // If the condition is constant, we can give a more precise answer. if (auto condAttr = operands.front().dyn_cast_or_null()) { Region *executedRegion = condAttr.getValue().isOneValue() ? &thenRegion() : &elseRegion(); regions.push_back(RegionSuccessor(executedRegion)); return; } // If the condition isn't constant, both regions may be executed. regions.push_back(RegionSuccessor(&thenRegion())); regions.push_back(RegionSuccessor(&elseRegion())); return; } /// Replaces the given op with the contents of the given single-block region, /// using the operands of the block terminator to replace operation results. static void replaceOpWithRegion(PatternRewriter &rewriter, Operation *op, Region ®ion, ValueRange blockArgs = {}) { assert(llvm::hasSingleElement(region) && "expected single-region block"); Block *block = ®ion.front(); Operation *terminator = block->getTerminator(); ValueRange results = terminator->getOperands(); rewriter.mergeBlockBefore(block, op, blockArgs); rewriter.replaceOp(op, results); rewriter.eraseOp(terminator); } void PrimIfOp::getCanonicalizationPatterns(RewritePatternSet &patterns, MLIRContext *context) { // If the condition is constant, delete the dead branch and inline the live // branch. patterns.add(+[](PrimIfOp op, PatternRewriter &rewriter) { auto constantBool = op.condition().getDefiningOp(); if (!constantBool) return rewriter.notifyMatchFailure(op, "non-constant condition"); replaceOpWithRegion( rewriter, op, constantBool.value() ? op.thenRegion() : op.elseRegion()); return success(); }); } //===----------------------------------------------------------------------===// // DerefineOp //===----------------------------------------------------------------------===// bool DerefineOp::areCastCompatible(mlir::TypeRange inputs, mlir::TypeRange outputs) { return isValidSubtype(inputs[0], outputs[0]); } void DerefineOp::getCanonicalizationPatterns(RewritePatternSet &patterns, MLIRContext *context) { patterns.add(+[](DerefineOp op, PatternRewriter &rewriter) { // TODO: Extend RefineTypes for this case and delete this canonicalization, // since we don't want control flow or calls to randomly block this fold // (this canonicalization pattern makes the compiler brittle to control flow // and calls). bool allAllowRefinement = llvm::all_of(op.getResult().getUsers(), allowsTypeRefinement); if (!allAllowRefinement) return failure(); rewriter.replaceOp(op, op.getOperand()); return success(); }); } //===----------------------------------------------------------------------===// // Aten__Is__Op //===----------------------------------------------------------------------===// OpFoldResult Aten__Is__Op::fold(ArrayRef operands) { auto lhsType = self().getType(); auto rhsType = obj().getType(); // If either type is a NoneType, make it be the lhsType. if (rhsType.isa()) std::swap(lhsType, rhsType); // TODO: Implement and use subtype infra for this. // If neither type is a subtype of the other, then the result is false. if (lhsType.isa() && !rhsType.isa()) return IntegerAttr::get(IntegerType::get(getContext(), 1), 0); return nullptr; } //===----------------------------------------------------------------------===// // AtenLenTOp //===----------------------------------------------------------------------===// OpFoldResult AtenDimOp::fold(ArrayRef operands) { if (auto tensorType = getOperand().getType().dyn_cast()) { if (tensorType.hasSizes()) return IntegerAttr::get(IntegerType::get(getContext(), 64), tensorType.getSizes().size()); } return nullptr; } //===----------------------------------------------------------------------===// // AtenLenTOp //===----------------------------------------------------------------------===// OpFoldResult AtenLenTOp::fold(ArrayRef operands) { // `len([1,1,1])` -> `3` if (auto listConstruct = getOperand().getDefiningOp()) { return IntegerAttr::get(IntegerType::get(getContext(), 64), listConstruct.getNumOperands()); } return nullptr; } void AtenLenTOp::getCanonicalizationPatterns(RewritePatternSet &patterns, MLIRContext *context) { // `len(t.size())` -> `t.ndim` patterns.add(+[](AtenLenTOp op, PatternRewriter &rewriter) { auto size = op.getOperand().getDefiningOp(); if (!size) return rewriter.notifyMatchFailure(op, "operand not AtenSizeOp"); rewriter.replaceOpWithNewOp(op, size.getOperand()); return success(); }); } //===----------------------------------------------------------------------===// // AtenSizeOp //===----------------------------------------------------------------------===// void AtenSizeOp::getCanonicalizationPatterns(RewritePatternSet &patterns, MLIRContext *context) { patterns.add(+[](AtenSizeOp op, PatternRewriter &rewriter) { auto type = op.getOperand().getType().dyn_cast(); if (!type || !type.areAllSizesKnown()) return rewriter.notifyMatchFailure(op, "all sizes not known"); SmallVector listElements; for (int64_t size : type.getSizes()) { listElements.push_back(rewriter.create( op->getLoc(), rewriter.getI64IntegerAttr(size))); } rewriter.replaceOpWithNewOp( op, Torch::ListType::get(rewriter.getType()), listElements); return success(); }); // One-off pattern to erase if dead. // TODO: Use the effects infra to express the semantics of this op and enable // a centralized "erase if dead" canonicalization. // Specifically, we need to mark the op as only MemoryEffects::Allocate // so that `mlir::wouldOpBeTriviallyDead` does the right thing. patterns.add(+[](AtenSizeOp op, PatternRewriter &rewriter) { if (!op.use_empty()) return failure(); rewriter.eraseOp(op); return failure(); }); } //===----------------------------------------------------------------------===// // AtenGtIntOp //===----------------------------------------------------------------------===// static IntegerAttr getI1IntegerAttr(MLIRContext *context, bool value) { return IntegerAttr::get(IntegerType::get(context, 1), static_cast(value)); } OpFoldResult AtenGtIntOp::fold(ArrayRef operands) { auto lhs = operands[0].dyn_cast_or_null(); auto rhs = operands[1].dyn_cast_or_null(); if (lhs && rhs) { return getI1IntegerAttr(getContext(), lhs.getValue().getSExtValue() > rhs.getValue().getSExtValue()); } return nullptr; } //===----------------------------------------------------------------------===// // AtenNeIntOp //===----------------------------------------------------------------------===// OpFoldResult AtenNeIntOp::fold(ArrayRef operands) { // `torch.aten.ne.int %x, %x` -> `false` if (getOperand(0) == getOperand(1)) return getI1IntegerAttr(getContext(), false); auto lhs = operands[0].dyn_cast_or_null(); auto rhs = operands[1].dyn_cast_or_null(); if (lhs && rhs) { return getI1IntegerAttr(getContext(), lhs.getValue().getSExtValue() != rhs.getValue().getSExtValue()); } return nullptr; } //===----------------------------------------------------------------------===// // NonValueTensorLiteralOp //===----------------------------------------------------------------------===// LogicalResult NonValueTensorLiteralOp::inferReturnTypes( MLIRContext *context, Optional location, ValueRange operands, DictionaryAttr attributes, RegionRange regions, SmallVectorImpl &inferredReturnTypes) { auto attr = attributes.get("value").dyn_cast_or_null(); if (!attr) return failure(); auto tensorType = attr.getType().cast(); inferredReturnTypes.push_back(NonValueTensorType::getFromShaped(tensorType)); return success(); } static bool areSizesAndDtypesCompatible(BaseTensorType a, BaseTensorType b) { if (a.hasSizes() && b.hasSizes()) { if (failed(verifyCompatibleShape(a.getSizes(), b.getSizes()))) return false; } if (a.hasDtype() && b.hasDtype()) { if (a.getDtype() != b.getDtype()) return false; } return true; } bool NonValueTensorLiteralOp::isCompatibleReturnTypes(TypeRange inferred, TypeRange actual) { if (!actual[0].isa()) return false; return areSizesAndDtypesCompatible(inferred[0].cast(), actual[0].cast()); } //===----------------------------------------------------------------------===// // ValueTensorLiteralOp //===----------------------------------------------------------------------===// LogicalResult ValueTensorLiteralOp::inferReturnTypes( MLIRContext *context, Optional location, ValueRange operands, DictionaryAttr attributes, RegionRange regions, SmallVectorImpl &inferredReturnTypes) { auto attr = attributes.get("value").dyn_cast_or_null(); if (!attr) return failure(); auto tensorType = attr.getType().cast(); inferredReturnTypes.push_back(ValueTensorType::getFromShaped(tensorType)); return success(); } OpFoldResult ValueTensorLiteralOp::fold(ArrayRef operands) { return valueAttr(); } //----------------------------------------------------------------------------// // TensorStaticInfoCast //----------------------------------------------------------------------------// bool TensorStaticInfoCastOp::areCastCompatible(mlir::TypeRange inputs, mlir::TypeRange outputs) { return areSizesAndDtypesCompatible(inputs[0].cast(), outputs[0].cast()); } //===----------------------------------------------------------------------===// // CopyToNonValueTensorOp //===----------------------------------------------------------------------===// static LogicalResult verify(CopyToNonValueTensorOp op) { auto resultType = op.getResult().getType().cast(); auto operandType = op.getOperand().getType().cast(); if (!resultType.hasSameSizesAndDtype(operandType)) { return op.emitError() << "operand and result must have same sizes and dtype"; } return success(); } LogicalResult CopyToNonValueTensorOp::inferReturnTypes( MLIRContext *context, Optional location, ValueRange operands, DictionaryAttr attributes, RegionRange regions, SmallVectorImpl &inferredReturnTypes) { auto resultType = operands[0].getType().cast(); inferredReturnTypes.push_back(resultType.getWithoutValueSemantics()); return success(); } void CopyToNonValueTensorOp::getEffects( SmallVectorImpl> &effects) { effects.emplace_back(MemoryEffects::Allocate::get(), getResult()); } //===----------------------------------------------------------------------===// // CopyToValueTensorOp //===----------------------------------------------------------------------===// static LogicalResult verify(CopyToValueTensorOp op) { auto resultType = op.getResult().getType().cast(); auto operandType = op.getOperand().getType().cast(); if (!resultType.hasSameSizesAndDtype(operandType)) { return op.emitError() << "operand and result must have same sizes and dtype"; } return success(); } LogicalResult CopyToValueTensorOp::inferReturnTypes( MLIRContext *context, Optional location, ValueRange operands, DictionaryAttr attributes, RegionRange regions, SmallVectorImpl &inferredReturnTypes) { auto resultType = operands[0].getType().cast(); inferredReturnTypes.push_back(resultType.getWithValueSemantics()); return success(); } void CopyToValueTensorOp::getEffects( SmallVectorImpl> &effects) { effects.emplace_back(MemoryEffects::Read::get(), getOperand()); } //===----------------------------------------------------------------------===// // ToBuiltinTensorOp //===----------------------------------------------------------------------===// LogicalResult ToBuiltinTensorOp::inferReturnTypes( MLIRContext *context, Optional location, ValueRange operands, DictionaryAttr attributes, RegionRange regions, SmallVectorImpl &inferredReturnTypes) { auto resultType = operands[0].getType().cast().toBuiltinTensor(); if (!resultType) return failure(); inferredReturnTypes.push_back(resultType); return success(); } //===----------------------------------------------------------------------===// // FromBuiltinTensorOp //===----------------------------------------------------------------------===// LogicalResult FromBuiltinTensorOp::inferReturnTypes( MLIRContext *context, Optional location, ValueRange operands, DictionaryAttr attributes, RegionRange regions, SmallVectorImpl &inferredReturnTypes) { inferredReturnTypes.push_back( ValueTensorType::getFromShaped(operands[0].getType().cast())); return success(); } //===----------------------------------------------------------------------===// // ConstantNoneOp //===----------------------------------------------------------------------===// OpFoldResult ConstantNoneOp::fold(ArrayRef operands) { return TypeAttr::get(Torch::NoneType::get(getContext())); } void ConstantNoneOp::getAsmResultNames( function_ref setNameFn) { setNameFn(getResult(), "none"); } //===----------------------------------------------------------------------===// // ConstantStrOp //===----------------------------------------------------------------------===// OpFoldResult ConstantStrOp::fold(ArrayRef operands) { return valueAttr(); } void ConstantStrOp::getAsmResultNames( function_ref setNameFn) { setNameFn(getResult(), "str"); } //===----------------------------------------------------------------------===// // ConstantIntOp //===----------------------------------------------------------------------===// static ParseResult parseConstantIntOp(OpAsmParser &parser, OperationState &result) { Builder builder(result.getContext()); result.addTypes(builder.getType()); if (parser.parseOptionalAttrDict(result.attributes)) return failure(); int64_t value; if (parser.parseInteger(value)) return failure(); result.addAttribute("value", builder.getI64IntegerAttr(value)); return success(); } static void print(OpAsmPrinter &p, Torch::ConstantIntOp op) { p << Torch::ConstantIntOp::getOperationName() << " "; p << op.value().getSExtValue(); p.printOptionalAttrDict(op->getAttrs(), {"value"}); } OpFoldResult Torch::ConstantIntOp::fold(ArrayRef operands) { return valueAttr(); } void Torch::ConstantIntOp::getAsmResultNames( function_ref setNameFn) { SmallVector buf; llvm::raw_svector_ostream os(buf); os << "int" << value(); setNameFn(getResult(), os.str()); } //===----------------------------------------------------------------------===// // ConstantFloatOp //===----------------------------------------------------------------------===// OpFoldResult Torch::ConstantFloatOp::fold(ArrayRef operands) { return valueAttr(); } void Torch::ConstantFloatOp::getAsmResultNames( function_ref setNameFn) { setNameFn(getResult(), "float"); } //===----------------------------------------------------------------------===// // ConstantBoolOp //===----------------------------------------------------------------------===// OpFoldResult Torch::ConstantBoolOp::fold(ArrayRef operands) { return valueAttr(); } void Torch::ConstantBoolOp::getAsmResultNames( function_ref setNameFn) { setNameFn(getResult(), value() ? "true" : "false"); } //===----------------------------------------------------------------------===// // Aten__Getitem__TOp //===----------------------------------------------------------------------===// void Aten__Getitem__TOp::getCanonicalizationPatterns( RewritePatternSet &patterns, MLIRContext *context) { patterns.add(+[](Aten__Getitem__TOp op, PatternRewriter &rewriter) { auto torchList = op.getOperand(0); // TODO: Use a proper effects interface when more operands taking a list // are implemented. if (!llvm::all_of(torchList.getUsers(), [](Operation *op) { return isa(op); })) return failure(); auto listConstruct = torchList.getDefiningOp(); if (!listConstruct) return failure(); int64_t index; if (!matchPattern(op.getOperand(1), m_TorchConstantInt(&index))) return failure(); rewriter.replaceOp(op, {listConstruct.getOperand(index)}); return success(); }); } #define GET_OP_CLASSES #include "npcomp/Dialect/Torch/IR/TorchOps.cpp.inc"