# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception import argparse import os import pickle import re import sys from torch_mlir_e2e_test.torchscript.framework import run_tests from torch_mlir_e2e_test.torchscript.reporting import report_results from torch_mlir_e2e_test.torchscript.registry import GLOBAL_TEST_REGISTRY # Available test configs. from torch_mlir_e2e_test.torchscript.configs import ( LinalgOnTensorsBackendTestConfig, NativeTorchTestConfig, TorchScriptTestConfig ) from torch_mlir_e2e_test.linalg_on_tensors_backends.refbackend import RefBackendLinalgOnTensorsBackend from .xfail_sets import XFAIL_SETS # Import tests to register them in the global registry. # Make sure to use `tools/torchscript_e2e_test.sh` wrapper for invoking # this script. from . import basic from . import vision_models from . import mlp from . import conv from . import batchnorm from . import quantized_models from . import elementwise from . import reduction def _get_argparse(): # TODO: Allow pulling in an out-of-tree backend, so downstream can easily # plug into the e2e tests. config_choices = ['native_torch', 'torchscript', 'refbackend'] parser = argparse.ArgumentParser(description='Run torchscript e2e tests.') parser.add_argument('-c', '--config', choices=config_choices, default='refbackend', help=f''' Meaning of options: "refbackend": run through torch-mlir's RefBackend. "native_torch": run the torch.nn.Module as-is without compiling (useful for verifying model is deterministic; ALL tests should pass in this configuration). "torchscript": compile the model to a torch.jit.ScriptModule, and then run that as-is (useful for verifying TorchScript is modeling the program correctly). ''') parser.add_argument('-f', '--filter', default='.*', help=''' Regular expression specifying which tests to include in this run. ''') parser.add_argument('-v', '--verbose', default=False, action='store_true', help='report test results with additional detail') parser.add_argument('--serialized-test-dir', default=None, type=str, help=''' The directory containing serialized pre-built tests. Right now, these are additional tests which require heavy Python dependencies to generate (or cannot even be generated with the version of PyTorch used by torch-mlir). See `build_tools/torchscript_e2e_heavydep_tests/generate_serialized_tests.sh` for more information on building these artifacts. ''') return parser def main(): args = _get_argparse().parse_args() # Find the selected config. if args.config == 'refbackend': config = LinalgOnTensorsBackendTestConfig(RefBackendLinalgOnTensorsBackend()) elif args.config == 'native_torch': config = NativeTorchTestConfig() elif args.config == 'torchscript': config = TorchScriptTestConfig() all_tests = list(GLOBAL_TEST_REGISTRY) if args.serialized_test_dir: for root, dirs, files in os.walk(args.serialized_test_dir): for filename in files: with open(os.path.join(root, filename), 'rb') as f: all_tests.append(pickle.load(f).as_test()) # Find the selected tests, and emit a diagnostic if none are found. tests = [ test for test in all_tests if re.match(args.filter, test.unique_name) ] if len(tests) == 0: print( f'ERROR: the provided filter {args.filter!r} does not match any tests' ) print('The available tests are:') for test in all_tests: print(test.unique_name) sys.exit(1) # Run the tests. results = run_tests(tests, config) # Report the test results. failed = report_results(results, XFAIL_SETS[args.config], args.verbose) sys.exit(1 if failed else 0) if __name__ == '__main__': main()